2,776 research outputs found

    A perception and manipulation system for collecting rock samples

    Get PDF
    An important part of a planetary exploration mission is to collect and analyze surface samples. As part of the Carnegie Mellon University Ambler Project, researchers are investigating techniques for collecting samples using a robot arm and a range sensor. The aim of this work is to make the sample collection operation fully autonomous. Described here are the components of the experimental system, including a perception module that extracts objects of interest from range images and produces models of their shapes, and a manipulation module that enables the system to pick up the objects identified by the perception module. The system was tested on a small testbed using natural terrain

    The nature of CuA in cytochrome c oxidase

    Get PDF
    The isolation and purification of yeast cytochrome c oxidase is described. Characterization of the purified protein indicates that it is spectroscopically identical with cytochrome c oxidase isolated from beef heart. Preparations of isotopically substituted yeast cytochrome c oxidase are obtained incorporating [1,3-15N2]histidine or [beta,beta- 2H2]cysteine. Electron paramagnetic resonance and electron nuclear double resonance spectra of the isotopically substituted proteins identify unambiguously at least 1 cysteine and 1 histidine as ligands to CuA and suggest that substantial spin density is delocalized onto a cysteine sulfur in the oxidized protein to render the site Cu(I)-S

    Lifshitz transition and van Hove singularity in a Topological Dirac Semimetal

    Full text link
    A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semimetal Na3Bi at a surface that reveals its nontrivial groundstate. Our studies, for the first time, reveal that the two 3D Dirac cones go through a topological change in the constant energy contour as a function of the binding energy, featuring a Lifshitz point, which is missing in a strict 3D analog of graphene (in other words Na3Bi is not a true 3D analog of graphene). Our results identify the first example of a band saddle point singularity in 3D Dirac materials. This is in contrast to its 2D analogs such as graphene and the helical Dirac surface states of a topological insulator. The observation of multiple Dirac nodes in Na3Bi connecting via a Lifshitz point along its crystalline rotational axis away from the Kramers point serves as a decisive signature for the symmetry-protected nature of the Dirac semimetal's topological groundstate.Comment: 5 pages, 4 Figures, Related papers on topological Fermi arcs and Weyl Semimetals (WSMs) are at http://physics.princeton.edu/zahidhasangroup/index.htm

    TeV Symmetry and the Little Hierarchy Problem

    Full text link
    Constraints from precision electroweak measurements reveal no evidence for new physics up to 5 - 7 TeV, whereas naturalness requires new particles at around 1 TeV to address the stability of the electroweak scale. We show that this "little hierarchy problem" can be cured by introducing a symmetry for new particles at the TeV scale. As an example, we construct a little Higgs model with this new symmetry, dubbed T-parity, which naturally solves the little hierarchy problem and, at the same time, stabilize the electroweak scale up to 10 TeV. The model has many important phenomenological consequences, including consistency with the precision data without any fine-tuning, a stable weakly-interacting particle as the dark matter candidate, as well as collider signals completely different from existing little Higgs models, but rather similar to the supersymmetric theories with conserved R-parity.Comment: 15 pages, 1 figure; v.2: typos corrected and various minor modifications/expansions on the presentations. now 16 pages and 1 figure. version to appear on JHE

    The hierarchy of multiple many-body interaction scales in high-temperature superconductors

    Full text link
    To date, angle-resolved photoemission spectroscopy has been successful in identifying energy scales of the many-body interactions in correlated materials, focused on binding energies of up to a few hundred meV below the Fermi energy. Here, at higher energy scale, we present improved experimental data from four families of high-Tc superconductors over a wide doping range that reveal a hierarchy of many-body interaction scales focused on: the low energy anomaly ("kink") of 0.03-0.09eV, a high energy anomaly of 0.3-0.5eV, and an anomalous enhancement of the width of the LDA-based CuO2 band extending to energies of ~ 2 eV. Besides their universal behavior over the families, we find that all of these three dispersion anomalies also show clear doping dependence over the doping range presented.Comment: 7 pages, 6 figure

    High resolution Compton scattering as a Probe of the Fermi surface in the Iron-based superconductor LaO1xFxFeAsLaO_{1-x}F_xFeAs

    Full text link
    We have carried out first principles all-electron calculations of the (001)-projected 2D electron momentum density and the directional Compton profiles along the [100], [001] and [110] directions in the Fe-based superconductor LaOFeAs within the framework of the local density approximation. We identify Fermi surface features in the 2D electron momentum density and the directional Compton profiles, and discuss issues related to the observation of these features via Compton scattering experiments.Comment: 4 pages, 3 figure

    Mass Determination in SUSY-like Events with Missing Energy

    Full text link
    We describe a kinematic method which is capable of determining the overall mass scale in SUSY-like events at a hadron collider with two missing (dark matter) particles. We focus on the kinematic topology in which a pair of identical particles is produced with each decaying to two leptons and an invisible particle (schematically, ppYY+jetspp\to YY+jets followed by each YY decaying via YXNY\to \ell X\to \ell\ell'N where NN is invisible). This topology arises in many SUSY processes such as squark and gluino production and decay, not to mention t\anti t di-lepton decays. In the example where the final state leptons are all muons, our errors on the masses of the particles YY, XX and NN in the decay chain range from 4 GeV for 2000 events after cuts to 13 GeV for 400 events after cuts. Errors for mass differences are much smaller. Our ability to determine masses comes from considering all the kinematic information in the event, including the missing momentum, in conjunction with the quadratic constraints that arise from the YY, XX and NN mass-shell conditions. Realistic missing momentum and lepton momenta uncertainties are included in the analysis.Comment: 41 pages, 14 figures, various clarifications and expanded discussion included in revised version that conforms to the version to be publishe

    Missing Momentum Reconstruction and Spin Measurements at Hadron Colliders

    Full text link
    We study methods for reconstructing the momenta of invisible particles in cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY and UED, in which new physics particles are pair produced. Their subsequent decays lead to two decay chains ending with neutral stable particles escaping detection. Assuming that the masses of the decaying particles are already measured, we obtain the momenta by imposing the mass-shell constraints. Using this information, we develop techniques of determining spins of particles in theories beyond the standard model. Unlike the methods relying on Lorentz invariant variables, this method can be used to determine the spin of the particle which initiates the decay chain. We present two complementary ways of applying our method by using more inclusive variables relying on kinematic information from one decay chain, as well as constructing correlation variables based on the kinematics of both decay chains in the same event.Comment: Version to appear in JHE
    corecore