274,948 research outputs found

    Quantum Critical Points in Quantum Impurity Systems

    Full text link
    The numerical renormalization group method is used to investigate zero temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.Comment: 2 pages, 3 figures, submitted to SCES'0

    Micro-electroforming metallic bipolar electrodes for mini-DMFC stacks

    Get PDF
    This paper describes the development of metallic bipolar plate fabrication using micro-electroforming process for mini-DMFC (direct methanol fuel cell) stacks. Ultraviolet (UV) lithography was used to define micro-fluidic channels using a photomask and exposure process. Micro-fluidic channels mold with 300 micrometers thick and 500 micrometers wide were firstly fabricated in a negative photoresist onto a stainless steel plate. Copper micro-electroforming was used to replicate the micro-fluidic channels mold. Following by sputtering silver (Ag) with 1.2 micrometers thick, the metallic bipolar plates were completed. The silver layer is used for corrosive resistance. The completed mini-DMFC stack is a 2x2 cm2 fuel cell stack including a 1.5x1.5 cm2 MEA (membrane electrode assembly). Several MEAs were assembly into mini-DMFC stacks using the completed metallic bipolar plates. All test results showed the metallic bipolar plates suitable for mini-DMFC stacks. The maximum output power density is 9.3mW/cm2 and current density is 100 mA/cm2 when using 8 vol. % methanol as fuel and operated at temperature 30 degrees C. The output power result is similar to other reports by using conventional graphite bipolar plates. However, conventional graphite bipolar plates have certain difficulty to be machined to such micro-fluidic channels. The proposed micro-electroforming metallic bipolar plates are feasible to miniaturize DMFC stacks for further portable 3C applications.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    The GSFC NASTRAN thermal analyzer new capabilities

    Get PDF
    An overview of four analysis capabilities, which developed and integrated into the NASTRAN Thermal Analyzer, is given. To broaden the scope of applications, these additions provide the NTA users with the following capabilities: (1) simulating a thermal louver as a means of the passive thermal control, (2) simulating a fluid loop for transporting energy as a means of the active thermal control, (3) condensing a large sized finite element model for an efficient transient thermal analysis, and (4) entering multiple boundary condition sets in a single submission for execution in steady state thermal analyses

    Coulomb corrections to bremsstrahlung in electric field of heavy atom at high energies

    Full text link
    The differential and partially integrated cross sections are considered for bremsstrahlung from high-energy electrons in atomic field with the exact account of this field. The consideration exploits the quasiclassical electron Green's function and wave functions in an external electric field. It is shown that the Coulomb corrections to the differential cross section are very susceptible to screening. Nevertheless, the Coulomb corrections to the cross section summed up over the final-electron states are independent of screening in the leading approximation over a small parameter 1/mrscr1/mr_{scr} (rscrr_{scr} is a screening radius, mm is the electron mass, =c=1\hbar=c=1). Bremsstrahlung from an electron beam of the finite size on heavy nucleus is considered as well. Again, the Coulomb corrections to the differential probability are very susceptible to the beam shape, while those to the probability integrated over momentum transfer are independent of it, apart from the trivial factor, which is the electron-beam density at zero impact parameter. For the Coulomb corrections to the bremsstrahlung spectrum, the next-to-leading terms with respect to the parameters m/ϵm/\epsilon (ϵ\epsilon is the electron energy) and 1/mrscr1/mr_{scr} are obtained.Comment: 13 pages, 4 figure

    Spectator Behavior in a Quantum Hall Antidot with Multiple Bound Modes

    Full text link
    We theoretically study Aharonov-Bohm resonances in an antidot system with multiple bound modes in the integer quantum Hall regime, taking capacitive interactions between the modes into account. We find the spectator behavior that the resonances of some modes disappear and instead are replaced by those of other modes, due to internal charge relaxation between the modes. This behavior is a possible origin of the features of previous experimental data which remain unexplained, spectator behavior in an antidot molecule and resonances in a single antidot with three modes.Comment: 4 pages, 3 figures, to be published in Physical Review Letter

    Geometry and Representations of the Quantum Supergroup OSPq(1|2n)

    Full text link
    The quantum supergroup OSPq(1|2n) is studied systematically. A Haar functional is constructed, and an algebraic version of the Peter - Weyl theory is extended to this quantum supergroup. Quantum homogeneous superspaces and quantum homogeneous supervector bundles are defined following the strategy of Connes' theory. Parabolic induction is developed by employing the quantum homogeneous supervector bundles. Quantum Frobenius reciprocity and a generalized Borel - Weil theorem are established for the induced representations.Comment: Latex, 20 page
    corecore