23 research outputs found

    Systematic study of carrier correlations in the electron-hole recombination dynamics of quantum dots

    Full text link
    The ground state carrier dynamics in self-assembled (In,Ga)As/GaAs quantum dots has been studied using time-resolved photoluminescence and transmission. By varying the dot design with respect to confinement and doping, the dynamics is shown to follow in general a non-exponential decay. Only for specific conditions in regard to optical excitation and carrier population, for example, the decay can be well described by a mono-exponential form. For resonant excitation of the ground state transition a strong shortening of the luminescence decay time is observed as compared to the non-resonant case. The results are consistent with a microscopic theory that accounts for deviations from a simple two-level picture.Comment: 8 pages, 7 figure

    High Purcell factor generation of indistinguishable on-chip single photons

    Get PDF
    On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot–photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates

    Nitrile Ylides and Azirines: Gas‐Phase Generation from 2,3‐Dihydro‐1,4,λ5‐oxazaphospholes and Matrix Isolation

    No full text
    A thermally generated nitrile ylide has been directly observed for the first time: Pyrolysis of 1 at 700°C leads to the nitrile ylide 2 (sharp IR band at v = 2250 cm). The flash pyrolysis of 1 at 400°C, on the other hand, furnishes the azirine 3, the ring of which opens upon irradiation to give 2 (R = tBu). (Figure Presented.

    Formation of allenyl ketones, 3-ethynylcoumarins, and arylfurans, furylfurans, and furylthiophenes by flash vacuum thermolysis of 3-methylidenefuran-2(3 H)-ones

    No full text
    Flash vacuum thermolysis (FVT) of 3-methylidenefuran-2(3H)-ones 3 causes cheletropic extrusion of CO with formation of allenyl ketones 4. o-Chloro- and o-bromophenylmethylidenefuranones also afford allenyl ketones upon flash vacuum thermolysis, but in addition, 3-ethynylcoumarins 6 are formed via E/Z isomerization of the methylidenefuranones, cyclization, halogen atom migration, and HCl (HBr) elimination. The presence of strongly electron-withdrawing groups (nitroaryl or acetyl) on the acylallene moiety causes rearrangement to give 2-arylfurans 10 and 13 as well as 2-furylfurans and 2-furylthiophenes 16 by cyclization of the allenyl ketones. The reaction mechanisms are supported by calculations at the M06-2X/6-311+G(d,p) level of theory

    Laser mode feeding by shaking quantum dots in a planar microcavity

    No full text
    Semiconductor light emission can be changed considerably in an optical resonator(1). Prerequisite is that the electronic transitions involved in light generation are in resonance with a cavity mode. Although resonance can be arranged through dedicated fabrication, there are cases where this is virtually impossible. As an example, we study a planar microcavity containing an inhomogeneous quantum dot ensemble with a spectral broadening much larger than the optical mode width, so that resonance is achieved for a tiny dot fraction only. Still, the laser threshold can be crossed at moderate optical pumping. We demonstrate that strain pulses generated by ultrafast acoustics techniques can be used to modulate the transition energies so that resonance with the optical mode is dynamically induced for a much larger dot fraction. As a result, the emission output can be enhanced by more than two orders of magnitude, which is potentially useful for modulating light sources.</p
    corecore