4,556 research outputs found
Mapping coherence in measurement via full quantum tomography of a hybrid optical detector
Quantum states and measurements exhibit wave-like --- continuous, or
particle-like --- discrete, character. Hybrid discrete-continuous photonic
systems are key to investigating fundamental quantum phenomena, generating
superpositions of macroscopic states, and form essential resources for
quantum-enhanced applications, e.g. entanglement distillation and quantum
computation, as well as highly efficient optical telecommunications. Realizing
the full potential of these hybrid systems requires quantum-optical
measurements sensitive to complementary observables such as field quadrature
amplitude and photon number. However, a thorough understanding of the practical
performance of an optical detector interpolating between these two regions is
absent. Here, we report the implementation of full quantum detector tomography,
enabling the characterization of the simultaneous wave and photon-number
sensitivities of quantum-optical detectors. This yields the largest
parametrization to-date in quantum tomography experiments, requiring the
development of novel theoretical tools. Our results reveal the role of
coherence in quantum measurements and demonstrate the tunability of hybrid
quantum-optical detectors.Comment: 7 pages, 3 figure
Rationale and design of the Apixaban for the Reduction of Thrombo-Embolism in Patients With Device-Detected Sub-Clinical Atrial Fibrillation (ARTESiA) trial.
BACKGROUND: Device-detected subclinical atrial fibrillation (AF) refers to infrequent, short-lasting, asymptomatic AF that is detected only with long-term continuous monitoring. Subclinical AF is common and associated with an increased risk of stroke; however, the risk of stroke with subclinical AF is lower than for clinical AF, and very few patients with subclinical AF alone have been included in large AF anticoagulation trials. The net benefit of anticoagulation in patients with subclinical AF is unknown. DESIGN: ARTESiA is a prospective, multicenter, double-blind, randomized controlled trial, recruiting patients with subclinical AF detected by an implanted pacemaker, defibrillator, or cardiac monitor, and who have additional risk factors for stroke. Patients with clinical AF documented by surface electrocardiogram will be excluded from the study. Participants will be randomized to receive either apixaban (according to standard AF dosing) or aspirin 81mg daily. The primary outcome is the composite of stroke, transient ischemic attack with diffusion-weighted magnetic resonance imaging evidence of cerebral infarction, and systemic embolism. Approximately 4,000 patients will be enrolled from around 230 clinical sites, with an anticipated mean follow-up of 36months until 248 adjudicated primary outcome events have occurred. SUMMARY: ARTESiA will determine whether oral anticoagulation therapy with apixaban compared with aspirin reduces the risk of stroke or systemic embolism in patients with subclinical AF and additional risk factors
Measuring measurement
Measurement connects the world of quantum phenomena to the world of classical
events. It plays both a passive role, observing quantum systems, and an active
one, preparing quantum states and controlling them. Surprisingly - in the light
of the central status of measurement in quantum mechanics - there is no general
recipe for designing a detector that measures a given observable. Compounding
this, the characterization of existing detectors is typically based on partial
calibrations or elaborate models. Thus, experimental specification (i.e.
tomography) of a detector is of fundamental and practical importance. Here, we
present the realization of quantum detector tomography: we identify the optimal
positive-operator-valued measure describing the detector, with no ancillary
assumptions. This result completes the triad, state, process, and detector
tomography, required to fully specify an experiment. We characterize an
avalanche photodiode and a photon number resolving detector capable of
detecting up to eight photons. This creates a new set of tools for accurately
detecting and preparing non-classical light.Comment: 6 pages, 4 figures,see video abstract at
http://www.quantiki.org/video_abstracts/0807244
Quantum teleportation between light and matter
Quantum teleportation is an important ingredient in distributed quantum
networks, and can also serve as an elementary operation in quantum computers.
Teleportation was first demonstrated as a transfer of a quantum state of light
onto another light beam; later developments used optical relays and
demonstrated entanglement swapping for continuous variables. The teleportation
of a quantum state between two single material particles (trapped ions) has now
also been achieved. Here we demonstrate teleportation between objects of a
different nature - light and matter, which respectively represent 'flying' and
'stationary' media. A quantum state encoded in a light pulse is teleported onto
a macroscopic object (an atomic ensemble containing 10^12 caesium atoms).
Deterministic teleportation is achieved for sets of coherent states with mean
photon number (n) up to a few hundred. The fidelities are 0.58+-0.02 for n=20
and 0.60+-0.02 for n=5 - higher than any classical state transfer can possibly
achieve. Besides being of fundamental interest, teleportation using a
macroscopic atomic ensemble is relevant for the practical implementation of a
quantum repeater. An important factor for the implementation of quantum
networks is the teleportation distance between transmitter and receiver; this
is 0.5 metres in the present experiment. As our experiment uses propagating
light to achieve the entanglement of light and atoms required for
teleportation, the present approach should be scalable to longer distances.Comment: 23 pages, 8 figures, incl. supplementary informatio
Requirement of Podocalyxin in TGF-Beta Induced Epithelial Mesenchymal Transition
Epithelial mesenchymal transition (EMT) is characterized by the development of mesenchymal properties such as a fibroblast-like morphology with altered cytoskeletal organization and enhanced migratory potential. We report that the expression of podocalyxin (PODXL), a member of the CD34 family, is markedly increased during TGF-β induced EMT. PODXL is enriched on the leading edges of migrating A549 cells. Silencing of podocalyxin expression reduced cell ruffle formation, spreading, migration and affected the expression patterns of several proteins that normally change during EMT (e.g., vimentin, E-cadherin). Cytoskeletion assembly in EMT was also found to be dependent on the production of podocalyin. Compositional analysis of podocalyxin containing immunoprecipitates revealed that collagen type 1 was consistently associated with these isolates. Collagen type 1 was also found to co-localize with podocalyxin on the leading edges of migrating cells. The interactions with collagen may be a critical aspect of podocalyxin function. Podocalyxin is an important regulator of the EMT like process as it regulates the loss of epithelial features and the acquisition of a motile phenotype
Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model
In the chiral magnetic effect an imbalance in the number of left- and
right-handed quarks gives rise to an electromagnetic current parallel to the
magnetic field produced in noncentral heavy-ion collisions. The chiral
imbalance may be induced by topologically nontrivial gluon configurations via
the QCD axial anomaly, while the resulting electromagnetic current itself is a
consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain
limit is dual to large-N_c QCD, we discuss the proper implementation of the QED
axial anomaly, the (ambiguous) definition of chiral currents, and the
calculation of the chiral magnetic effect. We show that this model correctly
contains the so-called consistent anomaly, but requires the introduction of a
(holographic) finite counterterm to yield the correct covariant anomaly.
Introducing net chirality through an axial chemical potential, we find a
nonvanishing vector current only before including this counterterm. This seems
to imply the absence of the chiral magnetic effect in this model. On the other
hand, for a conventional quark chemical potential and large magnetic field,
which is of interest in the physics of compact stars, we obtain a nontrivial
result for the axial current that is in agreement with previous calculations
and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent
conductivity at the end of section 4; references added; version to appear in
JHE
Steam reforming on transition-metal carbides from density-functional theory
A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2)
on early transition-metal carbides (TMC's) is performed by means of
density-functional theory calculations. The set of considered surfaces includes
the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC,
VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces.
It is found that carbides provide a wide spectrum of reactivities towards the
steam reforming reaction, from too reactive via suitable to too inert. The
reactivity is discussed in terms of the electronic structure of the clean
surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated
alpha-Mo_2C(100) surfaces, are identified as promising steam reforming
catalysts. These findings suggest that carbides provide a playground for
reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure
Recognition of Face Identity and Emotion in Expressive Specific Language Impairment
Objective: To study face and emotion recognition in children with mostly expressive specific language impairment (SLI-E). Subjects and Methods: A test movie to study perception and recognition of faces and mimic-gestural expression was applied to 24 children diagnosed as suffering from SLI-E and an age-matched control group of normally developing children. Results: Compared to a normal control group, the SLI-E children scored significantly worse in both the face and expression recognition tasks with a preponderant effect on emotion recognition. The performance of the SLI-E group could not be explained by reduced attention during the test session. Conclusion: We conclude that SLI-E is associated with a deficiency in decoding non-verbal emotional facial and gestural information, which might lead to profound and persistent problems in social interaction and development. Copyright (C) 2012 S. Karger AG, Base
Recommended from our members
The influence of soil communities on the temperature sensitivity of soil respiration
Soil respiration represents a major carbon flux between terrestrial ecosystems and the atmosphere, and is expected to accelerate under climate warming. Despite its importance in climate change forecasts, however, our understanding of the effects of temperature on soil respiration (RS) is incomplete. Using a metabolic ecology approach we link soil biota metabolism, community composition and heterotrophic activity, to predict RS rates across five biomes. We find that accounting for the ecological mechanisms underpinning decomposition processes predicts climatological RS variations observed in an independent dataset (n = 312). The importance of community composition is evident because without it RS is substantially underestimated. With increasing temperature, we predict a latitudinal increase in RS temperature sensitivity, with Q10 values ranging between 2.33 ±0.01 in tropical forests to 2.72 ±0.03 in tundra. This global trend has been widely observed, but has not previously been linked to soil communities
- …