4,958 research outputs found

    On the temporal Wilson loop in the Hamiltonian approach in Coulomb gauge

    Full text link
    We investigate the temporal Wilson loop using the Hamiltonian approach to Yang-Mills theory. In simple cases such as the Abelian theory or the non-Abelian theory in (1+1) dimensions, the known results can be reproduced using unitary transformations to take care of time evolution. We show how Coulomb gauge can be used for an alternative solution if the exact ground state wave functional is known. In the most interesting case of Yang-Mills theory in (3+1) dimensions, the vacuum wave functional is not known, but recent variational approaches in Coulomb gauge give a decent approximation. We use this formulation to compute the temporal Wilson loop and find that the Wilson and Coulomb string tension agree within our approximation scheme. Possible improvements of these findings are briefly discussed.Comment: 24 pages, 4 eps-figures; new version matches published on

    Magnetic Properties of the Novel Low-Dimensional Cuprate Na5RbCu4(AsO4)4Cl2

    Full text link
    The magnetic properties of a new compound, Na5RbCu4(AsO4)4Cl2 are reported. The material has a layered structure comprised of square Cu4O4 tetramers. The Cu ions are divalent and the system behaves as a low-dimensional S=1/2 antiferromagnet. Spin exchange in Na5RbCu4(AsO4)4Cl2 appears to be quasi-two-dimensional and non-frustrated. Measurements of the bulk magnetic susceptibility and heat capacity are consistent with low-dimensional magnetism. The compound has an interesting, low-entropy, magnetic transition at T = 17 K.Comment: 4 pages, 5 figure

    The spin 1/2 Heisenberg star with frustration II: The influence of the embedding medium

    Full text link
    We investigate the spin 1/2 Heisenberg star introduced in J. Richter and A. Voigt, J. Phys. A: Math. Gen. {\bf 27}, 1139 (1994). The model is defined by H=J1i=1Ns0si+J2HR{si}H=J_1 \sum_{i=1}^{N}{{\bf s}_0{\bf s}_i} + J_2 H_{R}\{{\bf s}_i\} ; J1,J20J_1,J_2 \ge 0 , i=1,...,Ni=1,...,N. In extension to the Ref. we consider a more general HR{si}H_{R}\{{\bf s}_i\} describing the properties of the spins surrounding the central spin s0{\bf s}_0. The Heisenberg star may be considered as an essential structure element of a lattice with frustration (namely a spin embedded in a magnetic matrix HRH_R) or, alternatively, as a magnetic system HR H_R with a perturbation by an extra spin. We present some general features of the eigenvalues, the eigenfunctions as well as the spin correlation s0si\langle {\bf s}_0{\bf s}_i \rangle of the model. For HRH_R being a linear chain, a square lattice or a Lieb-Mattis type system we present the ground state properties of the model in dependence on the frustration parameter α=J2/J1\alpha=J_2/J_1. Furthermore the thermodynamic properties are calculated for HRH_R being a Lieb--Mattis antiferromagnet.Comment: 16 pages, uuencoded compressed postscript file, accepted to J. Phys. A: Math. Ge

    The J_1-J_2 antiferromagnet with Dzyaloshinskii-Moriya interaction on the square lattice: An exact diagonalization study

    Full text link
    We examine the influence of an anisotropic interaction term of Dzyaloshinskii-Moriya (DM) type on the groundstate ordering of the J_1-J_2 spin-1/2-Heisenberg antiferromagnet on the square lattice. For the DM term we consider several symmetries corresponding to different crystal structures. For the pure J_1-J_2 model there are strong indications for a quantum spin liquid in the region of 0.4 < J_2/J_1 < 0.65. We find that a DM interaction influences the breakdown of the conventional antiferromagnetic order by i) shifting the spin liquid region, ii) changing the isotropic character of the groundstate towards anisotropic correlations and iii) creating for certain symmetries a net ferromagnetic moment.Comment: 7 pages, RevTeX, 6 ps-figures, to appear in J. Phys.: Cond. Ma

    Magnetic Proximity Effect in Perovskite Superconductor/Ferromagnet Multilayers

    Full text link
    YBa2Cu3O7/La2/3Ca1/3MnO3\mathrm{YBa_2Cu_3O_7/La_{2/3}Ca_{1/3}MnO_3} superconducting/ferromagnetic (SC/FM) multilayers have been studied by neutron reflectometry. Evidence for a characteristic difference between the structural and magnetic depth profiles is obtained from the occurrence of a structurally forbidden Bragg peak in the FM state. The comparison with simulated reflectivity curves allows us to identify two possible magnetization profiles: a sizable magnetic moment within the SC layer antiparallel to the one in the FM layer (inverse proximity effect), or a ``dead'' region in the FM layer with zero net magnetic moment. The former scenario is supported by an anomalous SC-induced enhancement of the off-specular reflection, which testifies to a strong mutual interaction of SC and FM order parameters.Comment: 4 pages, 2 figures, submitted to PR

    Shear modulus of the hadron-quark mixed phase

    Full text link
    Robust arguments predict that a hadron-quark mixed phase may exist in the cores of some "neutron" stars. Such a phase forms a crystalline lattice with a shear modulus higher than that of the crust due to the high density and charge separation, even allowing for the effects of charge screening. This may lead to strong continuous gravitational-wave emission from rapidly rotating neutron stars and gravitational-wave bursts associated with magnetar flares and pulsar glitches. We present the first detailed calculation of the shear modulus of the mixed phase. We describe the quark phase using the bag model plus first-order quantum chromodynamics corrections and the hadronic phase using relativistic mean-field models with parameters allowed by the most massive pulsar. Most of the calculation involves treating the "pasta phases" of the lattice via dimensional continuation, and we give a general method for computing dimensionally continued lattice sums including the Debye model of charge screening. We compute all the shear components of the elastic modulus tensor and angle average them to obtain the effective (scalar) shear modulus for the case where the mixed phase is a polycrystal. We include the contributions from changing the cell size, which are necessary for the stability of the lower-dimensional portions of the lattice. Stability also requires a minimum surface tension, generally tens of MeV/fm^2 depending on the equation of state. We find that the shear modulus can be a few times 10^33 erg/cm^3, two orders of magnitude higher than the first estimate, over a significant fraction of the maximum mass stable star for certain parameter choices.Comment: 22 pages, 12 figures, version accepted by Phys. Rev. D, with the corrections to the shear modulus computation and Table I given in the erratu

    Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces

    Full text link
    We present first-principles calculations of the magnetic hyperfine fields H of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the dependence of H on the coordination number by placing the impurity in the surfaces, on top of them at the adatom positions, and in the bulk. We find a strong coordination dependence of H, different and characteristic for each impurity. The behavior is explained in terms of the on-site s-p hybridization as the symmetry is reduced at the surface. Our results are in agreement with recent experimental findings.Comment: 4 pages, 3 figure

    Encircling an Exceptional Point

    Full text link
    We calculate analytically the geometric phases that the eigenvectors of a parametric dissipative two-state system described by a complex symmetric Hamiltonian pick up when an exceptional point (EP) is encircled. An EP is a parameter setting where the two eigenvalues and the corresponding eigenvectors of the Hamiltonian coalesce. We show that it can be encircled on a path along which the eigenvectors remain approximately real and discuss a microwave cavity experiment, where such an encircling of an EP was realized. Since the wavefunctions remain approximately real, they could be reconstructed from the nodal lines of the recorded spatial intensity distributions of the electric fields inside the resonator. We measured the geometric phases that occur when an EP is encircled four times and thus confirmed that for our system an EP is a branch point of fourth order.Comment: RevTex 4.0, four eps-figures (low resolution
    corecore