60 research outputs found
Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data
Understanding the mechanisms of cell function and drug action is a major endeavor in
the pharmaceutical industry. Drug effects are governed by the intrinsic properties of the
drug (i.e., selectivity and potency) and the specific signaling transduction network of the
host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomicbased
approach to identify drug effects by monitoring drug-induced topology alterations.
With the proposed method, drug effects are investigated under several conditions on a
cell-type specific signaling network. First, starting with a generic pathway made of
logical gates, we build a cell-type specific map by constraining it to fit 13 key
phopshoprotein signals under 55 experimental cases. Fitting is performed via a
formulation as an Integer Linear Program (ILP) and solution by standard ILP solvers; a
procedure that drastically outperforms previous fitting schemes. Then, knowing the cell
topology, we monitor the same key phopshoprotein signals under the presence of drug
and cytokines and we re-optimize the specific map to reveal the drug-induced topology
alterations. To prove our case, we make a pathway map for the hepatocytic cell line
HepG2 and we evaluate the effects of 4 drugs: 3 selective inhibitors for the Epidermal
Growth Factor Receptor (EGFR) and a non selective drug. We confirm effects easily
predictable from the drugs’ main target (i.e. EGFR inhibitors blocks the EGFR pathway)
but we also uncover unanticipated effects due to either drug promiscuity or the cell’s
specific topology. An interesting finding is that the selective EGFR inhibitor Gefitinib is
able to inhibit signaling downstream the Interleukin-1alpha (IL-1α) pathway; an effect
that cannot be extracted from binding affinity based approaches. Our method represents
an unbiased approach to identify drug effects on a small to medium size pathways and
is scalable to larger topologies with any type of signaling perturbations (small molecules,
3
RNAi etc). The method is a step towards a better picture of drug effects in pathways,
the cornerstone in identifying the mechanisms of drug efficacy and toxicity
Non Linear Programming (NLP) Formulation for Quantitative Modeling of Protein Signal Transduction Pathways
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.National Institutes of Health (U.S.) (Grant P50-GM068762)National Institutes of Health (U.S.) (Grant R24-DK090963)United States. Army Research Office (Grant W911NF-09-0001)German Research Foundation (Grant GSC 111
An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing
The authors would like to thank the support on this research by the CRISP Project (Combinatorial Responses In Stress Pathways) funded by the BBSRC (BB/F00513X/1) under the Systems Approaches to Biological Research (SABR) Initiative.Peer reviewedPublisher PD
Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli
Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.National Institutes of Health (U.S.) (NIH grant P50-GM68762)National Institutes of Health (U.S.) (Grant U54-CA112967)United States. Dept. of Defense (Institute for Collaborative Biotechnologies
Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk
Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points
- …