1,621 research outputs found
Two-Dimensional Nature of Four-Layer Superconductors by Inequivalent Hole Distribution
The magnetization of the four-layer superconductor
CuBa_{2}Ca_{3}Cu_4O_{12-\delta} with T_c\simeq117 K is presented. The
high-field magnetization around T_c(H) follows the exact two-dimensional
scaling function given by Te\v{s}anovi\'{c} and Andreev. This feature is
contrary to the inference that the interlayer coupling becomes strong if the
number of CuO_2 planes in a unit cell increases. Also, the fluctuation-induced
susceptibility in the low-field region was analyzed by using the modified
Lawrence-Doniach model. The effective number of independently fluctuating CuO_2
layers per unit cell, g_{\rm eff}, turned out to be \simeq 2 rather than 4,
which indicated that two among the four CuO_2 layers were in states far from
their optimal doping levels. This result could explain why
CuBa_{2}Ca_{3}Cu_4O_{12-\delta} shows two-dimensional behavior.Comment: 5 pages and 4 figure
Managing Risk of Bidding in Display Advertising
In this paper, we deal with the uncertainty of bidding for display
advertising. Similar to the financial market trading, real-time bidding (RTB)
based display advertising employs an auction mechanism to automate the
impression level media buying; and running a campaign is no different than an
investment of acquiring new customers in return for obtaining additional
converted sales. Thus, how to optimally bid on an ad impression to drive the
profit and return-on-investment becomes essential. However, the large
randomness of the user behaviors and the cost uncertainty caused by the auction
competition may result in a significant risk from the campaign performance
estimation. In this paper, we explicitly model the uncertainty of user
click-through rate estimation and auction competition to capture the risk. We
borrow an idea from finance and derive the value at risk for each ad display
opportunity. Our formulation results in two risk-aware bidding strategies that
penalize risky ad impressions and focus more on the ones with higher expected
return and lower risk. The empirical study on real-world data demonstrates the
effectiveness of our proposed risk-aware bidding strategies: yielding profit
gains of 15.4% in offline experiments and up to 17.5% in an online A/B test on
a commercial RTB platform over the widely applied bidding strategies
Antiferromagnetic metal to heavy-fermion metal quantum phase transition in the Kondo lattice model: A strong coupling approach
We study the quantum phase transition from an antiferromagnetic metal to a
heavy fermion metal in the Kondo lattice model. Based on the strong coupling
approach we {\it first} diagonalize the Kondo coupling term. Since this strong
coupling approach makes the resulting Kondo term {\it relevant}, the Kondo
hybridization persists even in the antiferromagnetic metal, indicating that
fluctuations of Kondo singlets are not critical in the phase transition. We
find that the quantum transition in our strong coupling approach results from
{\it softening of antiferromagnetic spin fluctuations of localized spins},
driven by the Kondo interaction. Thus, the volume change of Fermi surface
becomes continuous across the transition. .....
The Infrared Einstein Ring in the Gravitational Lens MG1131+0456 and the Death of the Dusty Lens Hypothesis
We have obtained and modeled new NICMOS images of the lens system
MG1131+0456, which show that its lens galaxy is an H=18.6 mag, transparent,
early-type galaxy at a redshift of about z_l = 0.85; it has a major axis
effective radius R_e=0.68+/-0.05 arcsec, projected axis ratio b/a=0.77+/-0.02,
and major axis PA=60+/-2 degrees. The lens is the brightest member of a group
of seven galaxies with similar R-I and I-H colors, and the two closest group
members produce sufficient tidal perturbations to explain the ring morphology.
The host galaxy of the MG1131+0456 source is a z_s > 2 ERO (``extremely red
object'') which is lensed into optical and infrared rings of dramatically
different morphologies. These differences imply a strongly wavelength-dependent
source morphology that could be explained by embedding the host in a larger,
dusty disk. At 1.6 micron (H), the ring is spectacularly luminous, with a total
observed flux of H=17.4 mag and a de-magnified flux of 19.3 mag, corresponding
to a 1-2L_* galaxy at the probable source redshift of z_s > 2. Thus, it is
primarily the stellar emission of the radio source host galaxy that produces
the overall colors of two of the reddest radio lenses, MG1131+0456 and
B~1938+666, aided by the suppression of optical AGN emission by dust in the
source galaxy. The dusty lens hypothesis -- that many massive early-type
galaxies with 0.2 < z_l < 1.0 have large, uniform dust opacities -- is ruled
out.Comment: 27 pages, 8 COLOR figures, submitted to ApJ. Black and white version
available at http://cfa-www.harvard.edu/castle
Multiple regions of quantum criticality in YbAgGe
Dilation and thermopower measurements on YbAgGe, a heavy-fermion
antiferromagnet, clarify and refine the magnetic field-temperature (H-T) phase
diagram and reveal a field-induced phase with T-linear resistivity. On the
low-H side of this phase we find evidence for a first-order transition and
suggest that YbAgGe at 4.5 T may be close to a quantum critical end point. On
the high-H side our results are consistent with a second-order transition
suppressed to a quantum critical point near 7.2 T. We discuss these results in
light of global phase diagrams proposed for Kondo lattice systems
Synthesis and NOx removal performance of anatase S-TiO2/g-CN heterojunction formed from dye wastewater sludge.
In this study, sludges generated from Ti-based flocculation of dye wastewater were used to retrieve photoactive titania (S-TiO2). It was heterojunctioned with graphitic carbon nitride (g-CN) to augment photoactivity under UV/visible light irradiance. Later the as-prepared samples were utilized to remove nitrogen oxides (NOx) in the atmospheric condition through photocatalysis. Heterojunction between S-TiO2 and g-CN was prepared through facile calcination (@550 °C) of S-TiO2 and melamine mix. Advanced sample characterization was carried out and documented extensively. Successful heterojunction was confirmed from the assessment of morphological and optical attributes of the samples. Finally, the prepared samples' level of photoactivity was assessed through photooxidation of NOx under both UV and visible light irradiance. Enhanced photoactivity was observed in the prepared samples irrespective of the light types. After 1 h of UV/visible light-based photooxidation, the best sample STC4 was found to remove 15.18% and 9.16% of atmospheric NO, respectively. In STC4, the mixing ratio of S-TiO2, to melamine was maintained as 1:3. Moreover, the optical bandgap of STC4 was found as 2.65 eV, where for S-TiO2, it was 2.83 eV. Hence, the restrained rate of photogenerated charge recombination and tailored energy bandgap of the as-prepared samples were the primary factors for enhancing photoactivity
Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a ,25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.open1
- …