128 research outputs found

    Tuning gastropod locomotion: Modeling the influence of mucus rheology on the cost of crawling

    Get PDF
    Common gastropods such as snails crawl on a solid substrate by propagating muscular waves of shear stress on a viscoelastic mucus. Producing the mucus accounts for the largest component in the gastropod's energy budget, more than twenty times the amount of mechanical work used in crawling. Using a simple mechanical model, we show that the shear-thinning properties of the mucus favor a decrease in the amount of mucus necessary for crawling, thereby decreasing the overall energetic cost of locomotion.Comment: Corrected typo

    An effect of eyestalk ablation on antennular function in the spiny lobster, Panulirus argus

    Full text link
    1. Unilateral removal of the eyestalk (optic ganglia and medulla terminalis) in the Bermuda spiny lobster, Panulirus argus , disrupts normal initiation of feeding activity via chemo-tactile stimulation of the antennule on the side of the ablation. This deficit may be permanent for it has lasted without apparent remission for over five months and two molts. Unilateral eyestalk ablation also produces a temporary increase in antennular cleaning activity directed toward the antennule on the side of the ablation. This effect seems to last for less than 16 days. Unilateral eyestalk ablation does not appreciably disturb spontaneous antennular movements or responses to mechanical stimulation of the antennule on either side. Nor does it destroy the ability of the lobster to give differential responses to mechanical and chemo-tactile stimuli. Most lobsters recover normal sensory and motor functions in antennules that regenerate after amputation of the distal segment and sensory flagellae. In about 1/3 of the animals, however, some form of sensory or motor abnormality is evident in the regenerated antennule. These deficits are ascribed to occasional failure of regenerating neurons to reform appropriate central connections. They do not resemble the deficits following eyestalk ablation. The medulla terminalis is tentatively proposed as the portion of the nervous system critical for normal antennular function that is removed by eyestalk ablation. There seem to be similarities between the effects of eyestalk ablation in the Crustacea as described here and the effects following destruction of portions of the corpora pedunculata in insects. 1. Einseitige Entfernung des Augenstieles (optische Ganglien und Medulla terminalis) bei der Bermuda-Stachellanguste, Panulirus argus , unterbricht auf der operierten Seite den Beginn der normalen Freß-tätigkeit, die durch chemische und taktile Reizung der Antennula eingeleitet wird. Diese Störung kann irreversibel sein, denn sie überdauerte in über 5 Monaten zwei Häutungen.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47096/1/359_2004_Article_BF00340474.pd

    Species-Specific Diversity of a Fixed Motor Pattern: The Electric Organ Discharge of Gymnotus

    Get PDF
    Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane

    Agonistic behaviour and electric signalling in a mormyrid fish, Gnathonemus petersii

    Get PDF
    1. Agonistic motor behaviour and concurrent electric signalling were studied in individually held, residential Gnathonemus petersii. Aggressive behaviour was elicited by presenting a specimen of a closely related species, Mormyrus rume, for 3 min a day. 2. The principal agonistic motor patterns are described (Fig. 2). Among them head butt, approach and lateral display were further analysed. 3. The electrical activity displayed during agonistic behaviour was found to differ fundamentally both from isolated resting and swimming conditions. The mean discharge rate recorded during aggressive behaviour (31 Hz, Fig. 3 c) is approximately twice the rate observed in an isolated swimming fish (Fig. 3b) and three times the rate displayed by a resting animal (Fig. 3a). An attacking G. petersii exhibits a much greater range of electric organ discharge (EOD) intervals than isolated swimming or resting individuals. EOD-interval histograms recorded from attacking fish show two sharp modes at high discharge rate; there are no intermediate intervals. 4. During the course of an attack, the initially low and variable discharge rate increases fairly linearly as the distance from the attacked fish diminishes (Fig. 9). The EOD rate associated with physical contact (head butt) comprises between 60 and 80 Hz in 24 of 28 attacks analysed; the dominant mode of the distribution is 61 Hz (Fig. 8). 5. During subsequent lateral display, G. petersii emits a high discharge rate pattern consisting of two types of ldquosteady-staterdquo activities which may last up to a few seconds: the first is a fairly regular alternation of approx. 16 and 8 ms intervals (paired pulses); this pattern gives rise to the two peaks of high discharge rate in the interval histogram (Fig. 3c). The second is a regular sequence of either 16 or 8 ms intervals (Fig. 4A). The only female among the animals used in our study showed the same display but did not exhibit the highest possible discharge rate (i.e. a regular sequence or 8 ms intervals; Fig. 4B). The high discharge rate is terminated by a sudden discharge break (Figs. 4A and 6). 6. It is suggested that the attack-associated EOD rate increase is a remnant of an ordinary locomotory pattern which has changed its function to a ritualised aggressive signal that occurs in a socially significant and well-defined context. The high discharge rate might serve three functions: (i) behavioural isolation of closely related, sympatrically living mormyrids (perhaps by character displacement); (ii) recognition of sexes; (iii)_synchronisation of mates during courtship

    Ontogenetic development of electric-organ discharges in a mormyrid fish, the bulldog Marcusenius macrolepidotus (South African form)

    Get PDF
    The emergence and development of the electric-organ discharge (EOD) in larvae and juvenile bulldog Marcusenius macrolepidotus was investigated. Larvae hatched 4–5 days after spawning, and the first EODs were recorded on days 9 and 10 at a standard length (LS) of c. 6·5 mm. The larval EOD waveform was virtually monopolar, with a strong head-positive phase followed by a weak head-negative phase of long duration. A small separate potential preceded the EOD by c. 1·6 ms (believed to represent postsynaptic potential from electrocyte stalks). In contrast to previous reports on Pollimyrus adspersus with its distinct larval and adult EODs, in M. macrolepidotus there was a gradual transformation of the larval into the adult EOD waveform. The transformation started at an LS of c. 17 mm (at an age of c. 40 days), first indications being a decrease in duration of the head-negative phase, and an increase of its peak amplitude relative to that of the head-positive phase. Still later, the weak postpotential of the adult EOD emerged on the rising edge of the head-negative phase. The transformation was nearly completed at an LS of c. 30 mm (at an age of c. 60 days). Evolutionary and behavioural consequences of this alternative path of EOD ontogeny are discussed

    The EOD Sound Response in Weakly Electric Fish

    Get PDF
    1. A spontaneous EOD response to sound is described in two gymnotoids of the pulse Electric Organ Discharge (EOD) type, Hypopomus and Gymnotus, and in one mormyrid, Brienomyrus (Figs. 2-4). 2. In all three species, the EOD response to the sound onset was a transient EOD rate increase. In the low EOD rate Hypopomus (3-6 EODs/s at rest) the first, second, or third EOD interval following sound onset was significantly shorter than the average EOD interval before stimulation. The shortest latency found was 100 ms, the longest ca. 1.2 s. Gymnotus (around 50 EODs/s at rest) responded similarly, but the third interval after sound onset was the first to be affected even at highest intensities (shortest latencies approx. 60 ms; latencies >0.5 s at low sound intensities). In Brienomyrus (4-8 EODs/s at rest) the response occurred already at the first EOD interval after sound onset. 3. An EOD sound response was recorded in Hypoporous and in Gymnotus up to 5,000 Hz sound frequency (in one Gymnotus individual: up to 7,000 Hz). Due to technical limitations the low frequency limit of the response could not be exactly determined: the fishes responded well even below 100 Hz. Hypopomus had its maximum sensitivity around 500 Hz (Fig. 5), Gymnotus around 1,000 Hz (Fig. 6). 4. In all three species the EOD sound response was graded with sound intensity (Hypopomus: Fig. 7). 5. No EOD response to sound was found in two gymnotoids of the wave type, Eigenmannia and Apteronotus, and in the gymnotoid pulse fish Rhamphichthys. A criterion is proposed by which it should be possible to predict whether or not a weakly electric fish species will show the EOD sound response. 6. It is concluded that the EOD response to sound is similar to EOD responses to other kinds of stimulation (light, touch, vibration, food, and even electrical). The possible biological function is discussed
    • …
    corecore