89 research outputs found

    Brain and ventricular volume in patients with syndromic and complex craniosynostosis

    Get PDF
    textabstractPurpose: Brain abnormalities in patients with syndromic craniosynostosis can either be a direct result of the genetic defect or develop secondary to compression due to craniosynostosis, raised ICP or hydrocephalus. Today it is unknown whether children with syndromic craniosynostosis have normal brain volumes. The purpose of this study was to evaluate brain and ventricular volume measurements in patients with syndromic and complex craniosynostosis. This knowledge will improve our understanding of brain development and the origin of raised intracranial pressure in syndromic craniosynostosis. Methods: Brain and ventricular volumes were calculated from MRI scans of patients with craniosynostosis, 0.3 to 18.3 years of age. Brain volume was compared to age matched controls from the literature. All patient charts were reviewed to look for possible predictors of brain and ventricular volume. Results: Total brain volume in syndromic craniosynostosis equals that of normal controls, in the age range of 1 to 12 years. Brain growth occurred particularly in the first 5 years of age, after which it stabilized. Within the studied population, ventricular volume was significantly larger in Apert syndrome compared to all other syndromes and in patients with a Chiari I malformation. Conclusions: Patients with syndromic craniosynostosis have a normal total brain volume compared to normal controls. Increased ventricular volume is associated with Apert syndrome and Chiari I malformations, which is most commonly found in Crouzon syndrome. We advice screening of all patients with Apert and Crouzon syndrome for the development of enlarged ventricle volume and the presence of a Chiari I malformation

    Participant Perceptions of Twitter Research Ethics

    Get PDF
    Social computing systems such as Twitter present new research sites that have provided billions of data points to researchers. However, the availability of public social media data has also presented ethical challenges. As the research community works to create ethical norms, we should be considering users’ concerns as well. With this in mind, we report on an exploratory survey of Twitter users’ perceptions of the use of tweets in research. Within our survey sample, few users were previously aware that their public tweets could be used by researchers, and the majority felt that researchers should not be able to use tweets without consent. However, we find that these attitudes are highly contextual, depending on factors such as how the research is conducted or disseminated, who is conducting it, and what the study is about. The findings of this study point to potential best practices for researchers conducting observation and analysis of public data

    Neurochemical Architecture of the Central Complex Related to Its Function in the Control of Grasshopper Acoustic Communication

    Get PDF
    The central complex selects and coordinates the species- and situation-specific song production in acoustically communicating grasshoppers. Control of sound production is mediated by several neurotransmitters and modulators, their receptors and intracellular signaling pathways. It has previously been shown that muscarinic cholinergic excitation in the central complex promotes sound production whereas both GABA and nitric oxide/cyclic GMP signaling suppress its performance. The present immunocytochemical and pharmacological study investigates the question whether GABA and nitric oxide mediate inhibition of sound production independently. Muscarinic ACh receptors are expressed by columnar output neurons of the central complex that innervate the lower division of the central body and terminate in the lateral accessory lobes. GABAergic tangential neurons that innervate the lower division of the central body arborize in close proximity of columnar neurons and thus may directly inhibit these central complex output neurons. A subset of these GABAergic tangential neurons accumulates cyclic GMP following the release of nitric oxide from neurites in the upper division of the central body. While sound production stimulated by muscarine injection into the central complex is suppressed by co-application of sodium nitroprusside, picrotoxin-stimulated singing was not affected by co-application of this nitric oxide donor, indicating that nitric oxide mediated inhibition requires functional GABA signaling. Hence, grasshopper sound production is controlled by processing of information in the lower division of the central body which is subject to modulation by nitric oxide released from neurons in the upper division

    Metopic synostosis

    Get PDF
    Premature closure of the metopic suture results in a growth restriction of the frontal bones, which leads to a skull malformation known as trigonocephaly. Over the course of recent decades, its incidence has been rising, currently making it the second most common type of craniosynostosis. Treatment consists of a cranioplasty, usually preformed before the age of 1 year. Metopic synostosis is linked with an increased level of neurodevelopmental delays. Theories on the etiology of these delays range from a reduced volume of the anterior cranial fossa to intrinsic malformations of the brain. This paper aims to provide an overview of this entity by giving an update on the epidemiology, etiology, evolution of treatment, follow-up, and neurodevelopment of metopic synostosis

    Modifikationen in der operativen Therapie der Sagittalnahtsynostose

    No full text

    Spinaler Dermalsinus und atretische Meningocele - Differentialdiagnose und Behandlung

    No full text

    Probleme und Problemvermeidung in der Chirurgie spinaler Lipome

    No full text

    Kraniofaziale Chirurgie - aus Komplikationen lernen

    No full text
    • …
    corecore