21,469 research outputs found

    Bosonic Super Liouville System: Lax Pair and Solution

    Get PDF
    We study the bosonic super Liouville system which is a statistical transmutation of super Liouville system. Lax pair for the bosonic super Liouville system is constructed using prolongation method, ensuring the Lax integrability, and the solution to the equations of motion is also considered via Leznov-Saveliev analysis.Comment: LaTeX, no figures, 11 page

    Cancellation of Infrared Divergences in Hadronic Annihilation Decays of Heavy Quarkonia

    Full text link
    In the framework of a newly developed factorization formalism which is based on NRQCD, explicit cancellations are shown for the infrared divergences that appeared in the previously calculated hadronic annihilation decay rates of P-wave and D-wave heavy quarkonia. We extend them to a more general case that to leading order in v2v^2 and next-to-leading order in αs\alpha_s, the infrared divergences in the annihilation amplitudes of color-singlet QQˉ(2S+1LJ)Q\bar{Q}(^{2S+1}L_J) pair can be removed by including the contributions of color-octet operators QQˉ(2S+1(L1)J)Q\bar{Q}(^{2S+1}(L-1)_{J'}), QQˉ(2S+1(L3)J)Q\bar{Q}(^{2S+1}(L-3)_{J''}), ... in NRQCD. We also give the decay widths of 3DJLH^3D_J\rightarrow LH at leading order in αs\alpha_s.Comment: 8 pages, LaTex(3 figures included), to be publishe

    Unbounded Human Learning: Optimal Scheduling for Spaced Repetition

    Full text link
    In the study of human learning, there is broad evidence that our ability to retain information improves with repeated exposure and decays with delay since last exposure. This plays a crucial role in the design of educational software, leading to a trade-off between teaching new material and reviewing what has already been taught. A common way to balance this trade-off is spaced repetition, which uses periodic review of content to improve long-term retention. Though spaced repetition is widely used in practice, e.g., in electronic flashcard software, there is little formal understanding of the design of these systems. Our paper addresses this gap in three ways. First, we mine log data from spaced repetition software to establish the functional dependence of retention on reinforcement and delay. Second, we use this memory model to develop a stochastic model for spaced repetition systems. We propose a queueing network model of the Leitner system for reviewing flashcards, along with a heuristic approximation that admits a tractable optimization problem for review scheduling. Finally, we empirically evaluate our queueing model through a Mechanical Turk experiment, verifying a key qualitative prediction of our model: the existence of a sharp phase transition in learning outcomes upon increasing the rate of new item introductions.Comment: Accepted to the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    Fourier mode dynamics for the nonlinear Schroedinger equation in one-dimensional bounded domains

    Full text link
    We analyze the 1D focusing nonlinear Schr\"{o}dinger equation in a finite interval with homogeneous Dirichlet or Neumann boundary conditions. There are two main dynamics, the collapse which is very fast and a slow cascade of Fourier modes. For the cubic nonlinearity the calculations show no long term energy exchange between Fourier modes as opposed to higher nonlinearities. This slow dynamics is explained by fairly simple amplitude equations for the resonant Fourier modes. Their solutions are well behaved so filtering high frequencies prevents collapse. Finally these equations elucidate the unique role of the zero mode for the Neumann boundary conditions

    The Casimir force of Quantum Spring in the (D+1)-dimensional spacetime

    Full text link
    The Casimir effect for a massless scalar field on the helix boundary condition which is named as quantum spring is studied in our recent paper\cite{Feng}. In this paper, the Casimir effect of the quantum spring is investigated in (D+1)(D+1)-dimensional spacetime for the massless and massive scalar fields by using the zeta function techniques. We obtain the exact results of the Casimir energy and Casimir force for any DD, which indicate a Z2Z_2 symmetry of the two space dimensions. The Casimir energy and Casimir force have different expressions for odd and even dimensional space in the massless case but in both cases the force is attractive. In the case of odd-dimensional space, the Casimir energy density can be expressed by the Bernoulli numbers, while in the even case it can be expressed by the ζ\zeta-function. And we also show that the Casimir force has a maximum value which depends on the spacetime dimensions. In particular, for a massive scalar field, we found that the Casimir force varies as the mass of the field changes.Comment: 9 pages, 5 figures, v2, massive case added, refs. adde

    Polarimetric Multispectral Imaging Technology

    Get PDF
    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration

    Origin of Scaling Behavior of Protein Packing Density: A Sequential Monte Carlo Study of Compact Long Chain Polymers

    Full text link
    Single domain proteins are thought to be tightly packed. The introduction of voids by mutations is often regarded as destabilizing. In this study we show that packing density for single domain proteins decreases with chain length. We find that the radius of gyration provides poor description of protein packing but the alpha contact number we introduce here characterize proteins well. We further demonstrate that protein-like scaling relationship between packing density and chain length is observed in off-lattice self-avoiding walks. A key problem in studying compact chain polymer is the attrition problem: It is difficult to generate independent samples of compact long self-avoiding walks. We develop an algorithm based on the framework of sequential Monte Carlo and succeed in generating populations of compact long chain off-lattice polymers up to length N=2,000N=2,000. Results based on analysis of these chain polymers suggest that maintaining high packing density is only characteristic of short chain proteins. We found that the scaling behavior of packing density with chain length of proteins is a generic feature of random polymers satisfying loose constraint in compactness. We conclude that proteins are not optimized by evolution to eliminate packing voids.Comment: 9 pages, 10 figures. Accepted by J. Chem. Phy

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    A tracking algorithm for the stable spin polarization field in storage rings using stroboscopic averaging

    Full text link
    Polarized protons have never been accelerated to more than about 2525GeV. To achieve polarized proton beams in RHIC (250GeV), HERA (820GeV), and the TEVATRON (900GeV), ideas and techniques new to accelerator physics are needed. In this publication we will stress an important aspect of very high energy polarized proton beams, namely the fact that the equilibrium polarization direction can vary substantially across the beam in the interaction region of a high energy experiment when no countermeasure is taken. Such a divergence of the polarization direction would not only diminish the average polarization available to the particle physics experiment, but it would also make the polarization involved in each collision analyzed in a detector strongly dependent on the phase space position of the interacting particle. In order to analyze and compensate this effect, methods for computing the equilibrium polarization direction are needed. In this paper we introduce the method of stroboscopic averaging, which computes this direction in a very efficient way. Since only tracking data is needed, our method can be implemented easily in existing spin tracking programs. Several examples demonstrate the importance of the spin divergence and the applicability of stroboscopic averaging.Comment: 39 page
    corecore