2,669 research outputs found

    Effects of Dehydration on Freezing Characteristics and Survival in Liquid Nitrogen of Three Recalcitrant Seeds

    Get PDF
    The recalcitrant seeds rambutan( Nephelium lappaceum). durian (Durio zibethinus) and cempedak (Artocarpus inleger) have a high critical moisture content (below which ·rapid loss of viability occurs of 27.0%, 26.0% and 37.9%,respectively. The critical moisture for embroys were higher at 39.0% for rambutan, 53.9% for durian and 43.2% for Cempedak. Differential Thermal analysis of the embroyos confirmed that their threshhold moistures (below which there is no freezable water) were lower than their critical moistureS. The Threshhold moistures for rambutan, durian and cempedak embryos were approximately 30%, 32% and 33% respectively. It is suggested that unsuccessful attempts at cryopreservation of embroyos of 'recalcitrant seeds in the past maybe due to the absence of safe window between the high critical moisture content and the threshhold moisture. This results in freezing injury at the higher moistures and dehydration injury' at the lower moistures. Potential techniques to overcome this and improve cryopreservation of recalcitrant seed embryos are discussed

    Desiccation and Cryopreservation of Embryonic Axes of Hevea brasiliensis Muell. - Arg.

    Get PDF
    Hevea embryonic axes were desiccated for a period of 1 - 5 hours and the moisture content was determined at the end of each hour of desiccation. Another set of embryonic axes were aseptically desiccated for the same period before they were cryopreserved for 16 hours by direct immersion in liquid nitrogen (-196°C). At a moisture content between 14 - 20% (desiccation for 2 - 5 hours), 20 - 69% of the embryonic axes survived cryopreservation and formed seedlings with normal roots and shoots when cultured in vitro. A bnormalities were deteched in some seedlings however, hence, refinement of the technique is needed

    Contact and Friction of Nano-Asperities: Effects of Adsorbed Monolayers

    Full text link
    Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, spherical tip with radius of order 30nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory, but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact in a time interval grows as a power of the interval when the film is present and logarithmically with the interval for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load.Comment: RevTex4, 17 pages, 13 figure

    Imaging propagative exciton polaritons in atomically thin WSe2 waveguides

    Get PDF
    The exciton polariton (EP) is a half-light and half-matter quasiparticle that is promising for exploring both fundamental quantum phenomena as well as photonic applications. Van der Waals materials, such as transition-metal dichalcogenide (TMD), emerge as a promising nanophotonics platform due to its support of long propagative EPs even at room temperature. However, real-space studies have been limited to bulk crystal waveguides with a thickness no less than 60 nm. Here we report the nano-optical imaging of the transverse-electric EPs in WSe2 nanoflakes down to a few atomic layers, which can be turned on and off by tuning the polarization state of the excitation laser. Unlike previously studied transverse-magnetic modes that exist only in bulk TMD waveguides, we found that the transverse-electric EPs could reside in ultrathin WSe2 samples, owing to the alignment of the electric field with the in-plane dipole orientation of two-dimensional excitons. Furthermore, we show that the EP wavelength and propagation length can be largely controlled by varying laser energy and sample thickness. These findings open opportunities to realize near-infrared polaritonic devices and circuits truly at the atomically thin limit

    [Colored solutions of Yang-Baxter equation from representations of U_{q}gl(2)]

    Full text link
    We study the Hopf algebra structure and the highest weight representation of a multiparameter version of Uqgl(2)U_{q}gl(2). The commutation relations as well as other Hopf algebra maps are explicitly given. We show that the multiparameter universal R{\cal R} matrix can be constructed directly as a quantum double intertwiner, without using Reshetikhin's transformation. An interesting feature automatically appears in the representation theory: it can be divided into two types, one for generic qq, the other for qq being a root of unity. When applying the representation theory to the multiparameter universal R{\cal R} matrix, the so called standard and nonstandard colored solutions R(μ,ν;μ,ν)R(\mu,\nu; {\mu}', {\nu}') of the Yang-Baxter equation is obtained.Comment: [14]pages, latex, no figure

    Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning

    Get PDF
    Aerosol mass spectrometry has proved to be a powerful tool to measure submicron particulate composition with high time resolution. Factor analysis of mass spectra (MS) collected worldwide by aerosol mass spectrometer (AMS) demonstrates that submicron organic aerosol (OA) is usually composed of several major components, such as oxygenated (OOA), hydrocarbon-like (HOA), biomass burning (BBOA), and other primary OA. In order to help interpretation of component MS from factor analysis of ambient OA datasets, AMS measurements of different primary sources is required for comparison. Such work, however, has been very scarce in the literature, especially for high resolution MS (HR-MS) measurements, which performs improved characterization by separating the ions of different elemental composition at each <i>m</i>/<i>z</i> in comparison with unit mass resolution MS (UMR-MS) measurements. In this study, primary emissions from four types of Chinese cooking (CC) and six types of biomass burning (BB) were simulated systematically and measured using an Aerodyne High-Resolution Time-of-Flight AMS (HR-ToF-AMS). The MS of the CC emissions show high similarity, with <i>m</i>/<i>z</i> 41 and <i>m</i>/<i>z</i> 55 being the highest signals; the MS of the BB emissions also show high similarity, with <i>m</i>/<i>z</i> 29 and <i>m</i>/<i>z</i> 43 being the highest signals. The MS difference between the CC and BB emissions is much bigger than that between different CC (or BB) types, especially for the HR-MS. The O/C ratio of OA ranges from 0.08 to 0.13 for the CC emissions and from 0.18 to 0.26 for the BB emissions. The UMR ions of <i>m</i>/<i>z</i> 43, <i>m</i>/<i>z</i> 44, <i>m</i>/<i>z</i> 57, and <i>m</i>/<i>z</i> 60, usually used as tracers in AMS measurements, were examined for their HR-MS characteristics in the CC and BB emissions. In addition, the MS of the CC and BB emissions are also compared with component MS from factor analysis of ambient OA datasets observed in China, as well as with other AMS measurements of primary sources in the literature. The MS signatures of cooking and biomass burning emissions revealed in this study can be used as important reference for factor analysis of ambient OA datasets, especially for the relevant studies in East Asia

    R-matrix Floquet theory for laser-assisted electron-atom scattering

    Get PDF
    A new version of the R-matrix Floquet theory for laser-assisted electron-atom scattering is presented. The theory is non-perturbative and applicable to a non-relativistic many-electron atom or ion in a homogeneous linearly polarized field. It is based on the use of channel functions built from field-dressed target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.

    Anisotropic Structure of the Order Parameter in FeSe0.45Te0.55 Revealed by Angle Resolved Specific Heat

    Full text link
    The symmetry and structure of the superconducting gap in the Fe-based superconductors are the central issue for understanding these novel materials. So far the experimental data and theoretical models have been highly controversial. Some experiments favor two or more constant or nearly-constant gaps, others indicate strong anisotropy and yet others suggest gap zeros ("nodes"). Theoretical models also vary, suggesting that the absence or presence of the nodes depends quantitatively on the model parameters. An opinion that has gained substantial currency is that the gap structure, unlike all other known superconductors, including cuprates, may be different in different compounds within the same family. A unique method for addressing this issue, one of the very few methods that are bulk and angle-resolved, calls for measuring the electronic specific heat in a rotating magnetic field, as a function of field orientation with respect to the crystallographic axes. In this Communication we present the first such measurement for an Fe-based high-Tc superconductor (FeBSC). We observed a fourfold oscillation of the specific heat as a function of the in-plane magnetic field direction, which allowed us to identify the locations of the gap minima (or nodes) on the Fermi surface. Our results are consistent with the expectations of an extended s-wave model with a significant gap anisotropy on the electron pockets and the gap minima along the \Gamma M (or Fe-Fe bond) direction.Comment: 32 pages, 7 figure

    Semiclassical Quantization for the Spherically Symmetric Systems under an Aharonov-Bohm magnetic flux

    Full text link
    The semiclassical quantization rule is derived for a system with a spherically symmetric potential V(r)rνV(r) \sim r^{\nu} (2<ν<)(-2<\nu <\infty) and an Aharonov-Bohm magnetic flux. Numerical results are presented and compared with known results for models with ν=1,0,2,\nu = -1,0,2,\infty. It is shown that the results provided by our method are in good agreement with previous results. One expects that the semiclassical quantization rule shown in this paper will provide a good approximation for all principle quantum number even the rule is derived in the large principal quantum number limit n1n \gg 1. We also discuss the power parameter ν\nu dependence of the energy spectra pattern in this paper.Comment: 13 pages, 4 figures, some typos correcte

    220 fs Er-Yb:glass laser mode-locked by a broadband low-loss Si/Ge saturable absorber

    Full text link
    We demonstrate femtosecond performance of an ultra-broadband high-index-contrast saturable Bragg reflector consisting of a silicon/silicon-dioxide/germanium structure that is fully compatible with CMOS processing. This device offers a reflectivity bandwidth of over 700 nm and sub-picosecond recovery time of the saturable loss. It is used to achieve mode-locking of an Er-Yb:glass laser centered at 1540 nm, generating 220 fs pulses, with the broadest output spectrum to date
    corecore