26,402 research outputs found
Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1
Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance
Silicon solar cell process development, fabrication, and analysis
Two large cast ingots were evaluated. Solar cell performance versus substrate position within the ingots was obtained and the results are presented. Dendritic web samples were analyzed in terms of structural defects, and efforts were made to correlate the data with the performance of solar cells made from the webs
Silicon solar cell process development, fabrication and analysis
Solar cells were fabricated from EFG ribbons dendritic webs, cast ingots by heat exchanger method, and cast ingots by ubiquitous crystallization process. Baseline and other process variations were applied to fabricate solar cells. EFG ribbons grown in a carbon-containing gas atmosphere showed significant improvement in silicon quality. Baseline solar cells from dendritic webs of various runs indicated that the quality of the webs under investigation was not as good as the conventional CZ silicon, showing an average minority carrier diffusion length of about 60 um versus 120 um of CZ wafers. Detail evaluation of large cast ingots by HEM showed ingot reproducibility problems from run to run and uniformity problems of sheet quality within an ingot. Initial evaluation of the wafers prepared from the cast polycrystalline ingots by UCP suggested that the quality of the wafers from this process is considerably lower than the conventional CZ wafers. Overall performance was relatively uniform, except for a few cells which showed shunting problems caused by inclusions
Scalability study of solid xenon
We report a demonstration of the scalability of optically transparent xenon
in the solid phase for use as a particle detector above a kilogram scale. We
employed a cryostat cooled by liquid nitrogen combined with a xenon
purification and chiller system. A modified {\it Bridgeman's technique}
reproduces a large scale optically transparent solid xenon.Comment: arXiv admin note: substantial text overlap with arXiv:1410.649
Double-Well Potential : The WKB Approximation with Phase Loss and Anharmonicity Effect
We derive a general WKB energy splitting formula in a double-well potential
by incorporating both phase loss and anharmonicity effect in the usual WKB
approximation. A bare application of the phase loss approach to the usual WKB
method gives better results only for large separation between two potential
minima. In the range of substantial tunneling, however, the phase loss approach
with anharmonicity effect considered leads to a great improvement on the
accuracy of the WKB approximation.Comment: 14 pages, revtex, 1 figure, will appear at Phys. Rev.
Complex microwave conductivity of Na-DNA powders
We report the complex microwave conductivity, , of
Na-DNA powders, which was measured from 80 K to 300 K by using a microwave
cavity perturbation technique. We found that the magnitude of near
room temperature was much larger than the contribution of the surrounding water
molecules, and that the decrease of with decreasing temperature was
sufficiently stronger than that of the conduction of counterions. These results
clearly suggest that the electrical conduction of Na-DNA is intrinsically
semiconductive.Comment: 16 pages, 7 figure
Complete Treatment of Galaxy Two-Point Statistics: Gravitational Lensing Effects and Redshift-Space Distortions
We present a coherent theoretical framework for computing gravitational
lensing effects and redshift-space distortions in an inhomogeneous universe and
investigate their impacts on galaxy two-point statistics. Adopting the
linearized FRW metric, we derive the gravitational lensing and the generalized
Sachs-Wolfe effects that include the weak lensing distortion, magnification,
and time delay effects, and the redshift-space distortion, Sachs-Wolfe, and
integrated Sachs-Wolfe effects, respectively. Based on this framework, we first
compute their effects on observed source fluctuations, separating them as two
physically distinct origins: the volume effect that involves the change of
volume and is always present in galaxy two-point statistics, and the source
effect that depends on the intrinsic properties of source populations. Then we
identify several terms that are ignored in the standard method, and we compute
the observed galaxy two-point statistics, an ensemble average of all the
combinations of the intrinsic source fluctuations and the additional
contributions from the gravitational lensing and the generalized Sachs-Wolfe
effects. This unified treatment of galaxy two-point statistics clarifies the
relation of the gravitational lensing and the generalized Sachs-Wolfe effects
to the metric perturbations and the underlying matter fluctuations. For near
future dark energy surveys, we compute additional contributions to the observed
galaxy two-point statistics and analyze their impact on the anisotropic
structure. Thorough theoretical modeling of galaxy two-point statistics would
be not only necessary to analyze precision measurements from upcoming dark
energy surveys, but also provide further discriminatory power in understanding
the underlying physical mechanisms.Comment: 20 pages, 5 figures, Fig.4 corrected, appendix added, accepted for
publication in Physical Review
- …
