145,487 research outputs found
Profiles of thermal line emission from advection dominated accretion flows
Recently, Narayan & Raymond (1999) proposed that the thermal emission lines
from the hot plasma in advection dominated accretion flows (ADAFs) are
potentially observable with the next generation of X-ray observatories, with
which the physical properties of some X-ray sources can be probed. In ADAFs,
the temperature of the ion is so high that the thermal broadening of the line
is important. We calculate the profiles of thermal line emission from ADAFs, in
which both the thermal and Doppler broadening have been considered. It is found
that the double-peaked profiles are present for high inclination angles between
the axis of disk and the line of sight. The double-peaked profiles are smeared
in low inclination cases, and completely disappear while the inclination angle
is less than , where the thermal and turbulent broadening dominated
on the line profiles. We also note that the thermal line profile is affected by
the location of the transition radius of ADAF. The self-similar
height-integrated disk structure and the emissivity with power-law dependence
of radius are adopted in our calculations. The results obtained in this work
can be used as a diagnosis on the future X-ray observations of the thermal
lines. Some important physical quantities of ADAFs could be inferred from
future thermal line observations.Comment: 7 page
The perfect spin injection in silicene FS/NS junction
We theoretically investigate the spin injection from a ferromagnetic silicene
to a normal silicene (FS/NS), where the magnetization in the FS is assumed from
the magnetic proximity effect. Based on a silicene lattice model, we
demonstrated that the pure spin injection could be obtained by tuning the Fermi
energy of two spin species, where one is in the spin orbit coupling gap and the
other one is outside the gap. Moreover, the valley polarity of the spin species
can be controlled by a perpendicular electric field in the FS region. Our
findings may shed light on making silicene-based spin and valley devices in the
spintronics and valleytronics field.Comment: 6 pages, 3 figure
Classification and Ranking of Fermi LAT Gamma-ray Sources from the 3FGL Catalog using Machine Learning Techniques
We apply a number of statistical and machine learning techniques to classify
and rank gamma-ray sources from the Third Fermi Large Area Telescope (LAT)
Source Catalog (3FGL), according to their likelihood of falling into the two
major classes of gamma-ray emitters: pulsars (PSR) or Active Galactic Nuclei
(AGN). Using 1904 3FGL sources that have been identified/associated with AGN
(1738) and PSR (166), we train (using 70% of our sample) and test (using 30%)
our algorithms and find that the best overall accuracy (>96%) is obtained with
the Random Forest (RF) technique, while using a logistic regression (LR)
algorithm results in only marginally lower accuracy. We apply the same
techniques on a sub-sample of 142 known gamma-ray pulsars to classify them into
two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more,
the RF algorithm has the best overall accuracy (~90%), while a boosted LR
analysis comes a close second. We apply our two best models (RF and LR) to the
entire 3FGL catalog, providing predictions on the likely nature of {\it
unassociated} sources, including the likely type of pulsar (YNG or MSP). We
also use our predictions to shed light on the possible nature of some gamma-ray
sources with known associations (e.g. binaries, SNR/PWN). Finally, we provide a
list of plausible X-ray counterparts for some pulsar candidates, obtained using
Swift, Chandra, and XMM. The results of our study will be of interest for both
in-depth follow-up searches (e.g. pulsar) at various wavelengths, as well as
for broader population studies.Comment: Accepted by Ap
- …
