7,893 research outputs found
Studies of superconductivity and structure for CaC6 to pressures above 15 GPa
The dependence of the superconducting transition temperature Tc of CaC6 has
been determined as a function of hydrostatic pressure in both helium-loaded gas
and diamond-anvil cells to 0.6 and 32 GPa, respectively. Following an initial
increase at the rate +0.39(1) K/GPa, Tc drops abruptly from 15 K to 4 K at 10
GPa. Synchrotron x-ray measurements to 15 GPa point to a structural transition
near 10 GPa from a rhombohedral to a higher symmetry phase
Microscopic theory of glassy dynamics and glass transition for molecular crystals
We derive a microscopic equation of motion for the dynamical orientational
correlators of molecular crystals. Our approach is based upon mode coupling
theory. Compared to liquids we find four main differences: (i) the memory
kernel contains Umklapp processes, (ii) besides the static two-molecule
orientational correlators one also needs the static one-molecule orientational
density as an input, where the latter is nontrivial, (iii) the static
orientational current density correlator does contribute an anisotropic,
inertia-independent part to the memory kernel, (iv) if the molecules are
assumed to be fixed on a rigid lattice, the tensorial orientational correlators
and the memory kernel have vanishing l,l'=0 components. The resulting mode
coupling equations are solved for hard ellipsoids of revolution on a rigid
sc-lattice. Using the static orientational correlators from Percus-Yevick
theory we find an ideal glass transition generated due to precursors of
orientational order which depend on X and p, the aspect ratio and packing
fraction of the ellipsoids. The glass formation of oblate ellipsoids is
enhanced compared to that for prolate ones. For oblate ellipsoids with X <~ 0.7
and prolate ellipsoids with X >~ 4, the critical diagonal nonergodicity
parameters in reciprocal space exhibit more or less sharp maxima at the zone
center with very small values elsewhere, while for prolate ellipsoids with 2 <~
X <~ 2.5 we have maxima at the zone edge. The off-diagonal nonergodicity
parameters are not restricted to positive values and show similar behavior. For
0.7 <~ X <~ 2, no glass transition is found. In the glass phase, the
nonergodicity parameters show a pronounced q-dependence.Comment: 17 pages, 12 figures, accepted at Phys. Rev. E. v4 is almost
identical to the final paper version. It includes, compared to former
versions v2/v3, no new physical content, but only some corrected formulas in
the appendices and corrected typos in text. In comparison to version v1, in
v2-v4 some new results have been included and text has been change
A crystal theoretic method for finding rigged configurations from paths
The Kerov--Kirillov--Reshetikhin (KKR) bijection gives one to one
correspondences between the set of highest paths and the set of rigged
configurations. In this paper, we give a crystal theoretic reformulation of the
KKR map from the paths to rigged configurations, using the combinatorial R and
energy functions. This formalism provides tool for analysis of the periodic
box-ball systems.Comment: 24 pages, version for publicatio
Characteristics of First-Order Vortex Lattice Melting: Jumps in Entropy and Magnetization
We derive expressions for the jumps in entropy and magnetization
characterizing the first-order melting transition of a flux line lattice. In
our analysis we account for the temperature dependence of the Landau parameters
and make use of the proper shape of the melting line as determined by the
relative importance of electromagnetic and Josephson interactions. The results
agree well with experiments on anisotropic YBaCuO and
layered BiSrCaCuO materials and reaffirm the validity of
the London model.Comment: 4 pages. We have restructured the paper to emphasize that in the
London scaling regime (appropriate for YBCO) our results are essentially
exact. We have also emphasized that a major controversy over the relevance of
the London model to describe VL melting has been settled by this wor
Molecular mode-coupling theory for supercooled liquids: Application to water
We present mode-coupling equations for the description of the slow dynamics
observed in supercooled molecular liquids close to the glass transition. The
mode-coupling theory (MCT) originally formulated to study the slow relaxation
in simple atomic liquids, and then extended to the analysis of liquids composed
by linear molecules, is here generalized to systems of arbitrarily shaped,
rigid molecules. We compare the predictions of the theory for the -vector
dependence of the molecular nonergodicity parameters, calculated by solving
numerically the molecular MCT equations in two different approximation schemes,
with ``exact'' results calculated from a molecular dynamics simulation of
supercooled water. The agreement between theory and simulation data supports
the view that MCT succeeds in describing the dynamics of supercooled molecular
liquids, even for network forming ones.Comment: 22 pages 4 figures Late
Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics
We resolve the thermal motion of a high-stress silicon nitride nanobeam at
frequencies far below its fundamental flexural resonance (3.4 MHz) using
cavity-enhanced optical interferometry. Over two decades, the displacement
spectrum is well-modeled by that of a damped harmonic oscillator driven by a
thermal force, suggesting that the loss angle of the beam material is
frequency-independent. The inferred loss angle at 3.4 MHz, , agrees well with the quality factor () of the fundamental beam
mode (). In conjunction with measurements made on higher
order flexural modes, and accounting for the mode dependence of stress-induced
loss dilution, we find that the intrinsic (undiluted) loss angle of the beam
changes by less than a factor of 2 between 50 kHz and 50 MHz. We discuss the
impact of such "structural damping" on experiments in quantum optomechanics, in
which the thermal force acting on a mechanical oscillator coupled to an optical
cavity is overwhelmed by radiation pressure shot noise. As an illustration, we
show that structural damping reduces the bandwidth of ponderomotive squeezing.Comment: Submitted to the special issue of Physics Letters A in the memory of
V. Braginsk
Measurements and simulations of Cherenkov light in lead fluoride crystals
The anticipated use of more than one thousand lead fluoride (PbF2) crystals
as a fast and compact Cherenkov calorimeter material in a parity violation
experiment at MAMI stimulated the investigation of the light yield (L.Y.) of
these crystals. The number of photoelectrons (p.e.) per MeV deposited energy
has been determined with a hybrid photomultiplier tube (HPMT). In response to
radioactive sources a L.Y. between 1.7 and 1.9 p.e./MeV was measured with 4%
statistical and 5% systematic error. The L.Y. optimization with appropriate
wrappings and couplings was investigated by means of the HPMT. Furthermore, a
fast Monte Carlo simulation based on the GEANT code was employed to calculate
the characteristics of Cherenkov light in the PbF2 crystals. The computing time
was reduced by a factor of 50 compared to the regular photon tracking method by
implementing detection probabilities as a three-dimensional look-up table. For
a single crystal a L.Y. of 2.1 p.e./MeV was calculated. The corresponding
detector response to electrons between 10 and 1000 MeV was highly linear with a
variation smaller than 1%
α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO_x environments
The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and some are used as tracers of α-pinene oxidation. α-pinene reacts readily with OH and O_3 in the atmosphere followed by reactions with both HO_2 and NO. Due to the large number of potential reaction pathways, it can be difficult to determine what conditions lead to SOA. To better understand the SOA yield and chemical composition from low- and high-NO_x OH oxidation of α-pinene, studies were conducted in the Caltech atmospheric chamber under controlled chemical conditions. Experiments used low O_3 concentrations to ensure that OH was the main oxidant and low α-pinene concentrations such that the peroxy radical (RO_2) reacted primarily with either HO_2 under low-NO_x conditions or NO under high-NO_x conditions. SOA yield was suppressed under conditions of high-NO_x. SOA yield under high-NO_x conditions was greater when ammonium sulfate/sulfuric acid seed particles (highly acidic) were present prior to the onset of growth than when ammonium sulfate seed particles (mildly acidic) were present; this dependence was not observed under low-NO_x conditions. When aerosol seed particles were introduced after OH oxidation, allowing for later generation species to be exposed to fresh inorganic seed particles, a number of low-NO_x products partitioned to the highly acidic aerosol. This indicates that the effect of seed acidity and SOA yield might be under-estimated in traditional experiments where aerosol seed particles are introduced prior to oxidation. We also identify the presence of a number of carboxylic acids that are used as tracer compounds of α-pinene oxidation in the field as well as the formation of organosulfates and nitrooxy organosulfates. A number of the carboxylic acids were observed under all conditions, however, pinic and pinonic acid were only observed under low-NO_x conditions. Evidence is provided for particle-phase sulfate esterification of multi-functional alcohols
Nucleation of Stable Superconductivity in YBCO-Films
By means of the linear dynamic conductivity, inductively measured on
epitaxial films between 30mHz and 30 MHz, the transition line to
generic superconductivity is studied in fields between B=0 and 19T. It follows
closely the melting line described recently in terms of a blowout of
thermal vortex loops in clean materials. The critical exponents of the
correlation length and time near , however, seem to be dominated by
some intrinsic disorder. Columnar defects produced by heavy-ion irradiation up
to field-equivalent-doses of lead to a disappointing reduction
of while for the generic line of the pristine film
is recovered. These novel results are also discussed in terms of a loop-driven
destruction of generic superconductivity.Comment: 11 pages including 7 EPS figures, accepted for publication in the
Proceedings of the Spring Meeting of the German Physical Society, Muenster
1999,Festkoerperprobleme/Advances in Solid State Physics 199
- …
