7,893 research outputs found

    Studies of superconductivity and structure for CaC6 to pressures above 15 GPa

    Full text link
    The dependence of the superconducting transition temperature Tc of CaC6 has been determined as a function of hydrostatic pressure in both helium-loaded gas and diamond-anvil cells to 0.6 and 32 GPa, respectively. Following an initial increase at the rate +0.39(1) K/GPa, Tc drops abruptly from 15 K to 4 K at 10 GPa. Synchrotron x-ray measurements to 15 GPa point to a structural transition near 10 GPa from a rhombohedral to a higher symmetry phase

    Microscopic theory of glassy dynamics and glass transition for molecular crystals

    Full text link
    We derive a microscopic equation of motion for the dynamical orientational correlators of molecular crystals. Our approach is based upon mode coupling theory. Compared to liquids we find four main differences: (i) the memory kernel contains Umklapp processes, (ii) besides the static two-molecule orientational correlators one also needs the static one-molecule orientational density as an input, where the latter is nontrivial, (iii) the static orientational current density correlator does contribute an anisotropic, inertia-independent part to the memory kernel, (iv) if the molecules are assumed to be fixed on a rigid lattice, the tensorial orientational correlators and the memory kernel have vanishing l,l'=0 components. The resulting mode coupling equations are solved for hard ellipsoids of revolution on a rigid sc-lattice. Using the static orientational correlators from Percus-Yevick theory we find an ideal glass transition generated due to precursors of orientational order which depend on X and p, the aspect ratio and packing fraction of the ellipsoids. The glass formation of oblate ellipsoids is enhanced compared to that for prolate ones. For oblate ellipsoids with X <~ 0.7 and prolate ellipsoids with X >~ 4, the critical diagonal nonergodicity parameters in reciprocal space exhibit more or less sharp maxima at the zone center with very small values elsewhere, while for prolate ellipsoids with 2 <~ X <~ 2.5 we have maxima at the zone edge. The off-diagonal nonergodicity parameters are not restricted to positive values and show similar behavior. For 0.7 <~ X <~ 2, no glass transition is found. In the glass phase, the nonergodicity parameters show a pronounced q-dependence.Comment: 17 pages, 12 figures, accepted at Phys. Rev. E. v4 is almost identical to the final paper version. It includes, compared to former versions v2/v3, no new physical content, but only some corrected formulas in the appendices and corrected typos in text. In comparison to version v1, in v2-v4 some new results have been included and text has been change

    A crystal theoretic method for finding rigged configurations from paths

    Full text link
    The Kerov--Kirillov--Reshetikhin (KKR) bijection gives one to one correspondences between the set of highest paths and the set of rigged configurations. In this paper, we give a crystal theoretic reformulation of the KKR map from the paths to rigged configurations, using the combinatorial R and energy functions. This formalism provides tool for analysis of the periodic box-ball systems.Comment: 24 pages, version for publicatio

    Characteristics of First-Order Vortex Lattice Melting: Jumps in Entropy and Magnetization

    Full text link
    We derive expressions for the jumps in entropy and magnetization characterizing the first-order melting transition of a flux line lattice. In our analysis we account for the temperature dependence of the Landau parameters and make use of the proper shape of the melting line as determined by the relative importance of electromagnetic and Josephson interactions. The results agree well with experiments on anisotropic Y1_1Ba2_2Cu3_3O7δ_{7-\delta} and layered Bi2_2Sr2_2Ca1_1Cu2_2O8_8 materials and reaffirm the validity of the London model.Comment: 4 pages. We have restructured the paper to emphasize that in the London scaling regime (appropriate for YBCO) our results are essentially exact. We have also emphasized that a major controversy over the relevance of the London model to describe VL melting has been settled by this wor

    Molecular mode-coupling theory for supercooled liquids: Application to water

    Full text link
    We present mode-coupling equations for the description of the slow dynamics observed in supercooled molecular liquids close to the glass transition. The mode-coupling theory (MCT) originally formulated to study the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of the theory for the qq-vector dependence of the molecular nonergodicity parameters, calculated by solving numerically the molecular MCT equations in two different approximation schemes, with ``exact'' results calculated from a molecular dynamics simulation of supercooled water. The agreement between theory and simulation data supports the view that MCT succeeds in describing the dynamics of supercooled molecular liquids, even for network forming ones.Comment: 22 pages 4 figures Late

    Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics

    Full text link
    We resolve the thermal motion of a high-stress silicon nitride nanobeam at frequencies far below its fundamental flexural resonance (3.4 MHz) using cavity-enhanced optical interferometry. Over two decades, the displacement spectrum is well-modeled by that of a damped harmonic oscillator driven by a 1/f1/f thermal force, suggesting that the loss angle of the beam material is frequency-independent. The inferred loss angle at 3.4 MHz, ϕ=4.5106\phi = 4.5\cdot 10^{-6}, agrees well with the quality factor (QQ) of the fundamental beam mode (ϕ=Q1\phi = Q^{-1}). In conjunction with QQ measurements made on higher order flexural modes, and accounting for the mode dependence of stress-induced loss dilution, we find that the intrinsic (undiluted) loss angle of the beam changes by less than a factor of 2 between 50 kHz and 50 MHz. We discuss the impact of such "structural damping" on experiments in quantum optomechanics, in which the thermal force acting on a mechanical oscillator coupled to an optical cavity is overwhelmed by radiation pressure shot noise. As an illustration, we show that structural damping reduces the bandwidth of ponderomotive squeezing.Comment: Submitted to the special issue of Physics Letters A in the memory of V. Braginsk

    Measurements and simulations of Cherenkov light in lead fluoride crystals

    Full text link
    The anticipated use of more than one thousand lead fluoride (PbF2) crystals as a fast and compact Cherenkov calorimeter material in a parity violation experiment at MAMI stimulated the investigation of the light yield (L.Y.) of these crystals. The number of photoelectrons (p.e.) per MeV deposited energy has been determined with a hybrid photomultiplier tube (HPMT). In response to radioactive sources a L.Y. between 1.7 and 1.9 p.e./MeV was measured with 4% statistical and 5% systematic error. The L.Y. optimization with appropriate wrappings and couplings was investigated by means of the HPMT. Furthermore, a fast Monte Carlo simulation based on the GEANT code was employed to calculate the characteristics of Cherenkov light in the PbF2 crystals. The computing time was reduced by a factor of 50 compared to the regular photon tracking method by implementing detection probabilities as a three-dimensional look-up table. For a single crystal a L.Y. of 2.1 p.e./MeV was calculated. The corresponding detector response to electrons between 10 and 1000 MeV was highly linear with a variation smaller than 1%

    α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO_x environments

    Get PDF
    The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and some are used as tracers of α-pinene oxidation. α-pinene reacts readily with OH and O_3 in the atmosphere followed by reactions with both HO_2 and NO. Due to the large number of potential reaction pathways, it can be difficult to determine what conditions lead to SOA. To better understand the SOA yield and chemical composition from low- and high-NO_x OH oxidation of α-pinene, studies were conducted in the Caltech atmospheric chamber under controlled chemical conditions. Experiments used low O_3 concentrations to ensure that OH was the main oxidant and low α-pinene concentrations such that the peroxy radical (RO_2) reacted primarily with either HO_2 under low-NO_x conditions or NO under high-NO_x conditions. SOA yield was suppressed under conditions of high-NO_x. SOA yield under high-NO_x conditions was greater when ammonium sulfate/sulfuric acid seed particles (highly acidic) were present prior to the onset of growth than when ammonium sulfate seed particles (mildly acidic) were present; this dependence was not observed under low-NO_x conditions. When aerosol seed particles were introduced after OH oxidation, allowing for later generation species to be exposed to fresh inorganic seed particles, a number of low-NO_x products partitioned to the highly acidic aerosol. This indicates that the effect of seed acidity and SOA yield might be under-estimated in traditional experiments where aerosol seed particles are introduced prior to oxidation. We also identify the presence of a number of carboxylic acids that are used as tracer compounds of α-pinene oxidation in the field as well as the formation of organosulfates and nitrooxy organosulfates. A number of the carboxylic acids were observed under all conditions, however, pinic and pinonic acid were only observed under low-NO_x conditions. Evidence is provided for particle-phase sulfate esterification of multi-functional alcohols

    Nucleation of Stable Superconductivity in YBCO-Films

    Full text link
    By means of the linear dynamic conductivity, inductively measured on epitaxial films between 30mHz and 30 MHz, the transition line Tg(B)T_g (B) to generic superconductivity is studied in fields between B=0 and 19T. It follows closely the melting line Tm(B)T_m (B) described recently in terms of a blowout of thermal vortex loops in clean materials. The critical exponents of the correlation length and time near Tg(B)T_g (B), however, seem to be dominated by some intrinsic disorder. Columnar defects produced by heavy-ion irradiation up to field-equivalent-doses of Bϕ=10TB_{\phi} = 10T lead to a disappointing reduction of Tg(B0)T_g (B \to 0) while for B>BϕB>B_{\phi} the generic line of the pristine film is recovered. These novel results are also discussed in terms of a loop-driven destruction of generic superconductivity.Comment: 11 pages including 7 EPS figures, accepted for publication in the Proceedings of the Spring Meeting of the German Physical Society, Muenster 1999,Festkoerperprobleme/Advances in Solid State Physics 199
    corecore