14,397 research outputs found
Casimir pistons with hybrid boundary conditions
The Casimir effect giving rise to an attractive or repulsive force between
the configuration boundaries that confine the massless scalar field is
reexamined for one to three-dimensional pistons in this paper. Especially, we
consider Casimir pistons with hybrid boundary conditions, where the boundary
condition on the piston is Neumann and those on other surfaces are Dirichlet.
We show that the Casimir force on the piston is always repulsive, in contrast
with the same problem where the boundary conditions are Dirichlet on all
surfaces.Comment: 8 pages, 4 figures,references added, minor typos correcte
Fractional quantum Hall effect at : Ground states, non-Abelian quasiholes, and edge modes in a microscopic model
We present a comprehensive numerical study of a microscopic model of the
fractional quantum Hall system at filling fraction , based on the
disc geometry. Our model includes Coulomb interaction and a semi-realistic
confining potential. We also mix in some three-body interaction in some cases
to help elucidate the physics. We obtain a phase diagram, discuss the
conditions under which the ground state can be described by the Moore-Read
state, and study its competition with neighboring stripe phases. We also study
quasihole excitations and edge excitations in the Moore-Read--like state. From
the evolution of edge spectrum, we obtain the velocities of the charge and
neutral edge modes, which turn out to be very different. This separation of
velocities is a source of decoherence for a non-Abelian quasihole/quasiparticle
(with charge ) when propagating at the edge; using numbers obtained
from a specific set of parameters we estimate the decoherence length to be
around four microns. This sets an upper bound for the separation of the two
point contacts in a double point contact interferometer, designed to detect the
non-Abelian nature of such quasiparticles. We also find a state that is a
potential candidate for the recently proposed anti-Pfaffian state. We find the
speculated anti-Pfaffian state is favored in weak confinement (smooth edge)
while the Moore-Read Pfaffian state is favored in strong confinement (sharp
edge).Comment: 15 pages, 9 figures; Estimate of e/4 quasiparticle/hole coherence
length when propagating along the edge modified in response to a recent
revision of Ref. 25, and minor changes elsewher
Scaling and non-Abelian signature in fractional quantum Hall quasiparticle tunneling amplitude
We study the scaling behavior in the tunneling amplitude when quasiparticles
tunnel along a straight path between the two edges of a fractional quantum Hall
annulus. Such scaling behavior originates from the propagation and tunneling of
charged quasielectrons and quasiholes in an effective field analysis. In the
limit when the annulus deforms continuously into a quasi-one-dimensional ring,
we conjecture the exact functional form of the tunneling amplitude for several
cases, which reproduces the numerical results in finite systems exactly. The
results for Abelian quasiparticle tunneling is consistent with the scaling
anaysis; this allows for the extraction of the conformal dimensions of the
quasiparticles. We analyze the scaling behavior of both Abelian and non-Abelian
quasiparticles in the Read-Rezayi Z_k-parafermion states. Interestingly, the
non-Abelian quasiparticle tunneling amplitudes exhibit nontrivial k-dependent
corrections to the scaling exponent.Comment: 16 pages, 4 figure
The Casimir force of Quantum Spring in the (D+1)-dimensional spacetime
The Casimir effect for a massless scalar field on the helix boundary
condition which is named as quantum spring is studied in our recent
paper\cite{Feng}. In this paper, the Casimir effect of the quantum spring is
investigated in -dimensional spacetime for the massless and massive
scalar fields by using the zeta function techniques. We obtain the exact
results of the Casimir energy and Casimir force for any , which indicate a
symmetry of the two space dimensions. The Casimir energy and Casimir
force have different expressions for odd and even dimensional space in the
massless case but in both cases the force is attractive. In the case of
odd-dimensional space, the Casimir energy density can be expressed by the
Bernoulli numbers, while in the even case it can be expressed by the
-function. And we also show that the Casimir force has a maximum value
which depends on the spacetime dimensions. In particular, for a massive scalar
field, we found that the Casimir force varies as the mass of the field changes.Comment: 9 pages, 5 figures, v2, massive case added, refs. adde
Casimir effect for the massless Dirac field in two-dimensional Reissner-Nordstr\"{o}m spacetime
In this paper, the two-dimensional Reissner-Nordstr\"{o}m black hole is
considered as a system of the Casimir type. In this background the Casimir
effect for the massless Dirac field is discussed. The massless Dirac field is
confined between two ``parallel plates'' separated by a distance and there
is no particle current drilling through the boundaries. The vacuum expectation
values of the stress tensor of the massless Dirac field at infinity are
calculated separately in the Boulware state, the Hartle-Hawking state and the
Unruh state.Comment: 10 pages, no figure. Accepted for publication in IJMP
Confidence and Backaction in the Quantum Filter Equation
We study the confidence and backaction of state reconstruction based on a
continuous weak measurement and the quantum filter equation. As a physical
example we use the traditional model of a double quantum dot being continuously
monitored by a quantum point contact. We examine the confidence of the estimate
of a state constructed from the measurement record, and the effect of
backaction of that measurement on that state. Finally, in the case of general
measurements we show that using the relative entropy as a measure of confidence
allows us to define the lower bound on the confidence as a type of quantum
discord.Comment: 9 pages, 6 figure
Search of Axions from a Nuclear Power Reactor with a High-Purity Germanium Detector
A search of axions produced in nuclear transitions was performed at the
Kuo-Sheng Nuclear Power Station with a high-purity germanium detector of mass
1.06 kg at a distance of 28 m from the 2.9 GW reactor core. The expected
experimental signatures were mono-energetic lines produced by their Primakoff
or Compton conversions at the detector. Based on 459.0/96.3 days of Reactor
ON/OFF data, no evidence of axion emissions were observed and constraints on
the couplings \gagg and \gaee versus axion mass within the framework
of invisible axion models were placed. The KSVZ and DFSZ models can be excluded
for 10^4 eV < m_a < 10^6 ~eV. Model-independent constraints on \gagg \gv1 < 7.7
X 10^{-9} GeV^{-2} for m_{a} < 10^5 eV and \gaee \gv1 < 1.3 X 10^{-10} for
m_{a} < 10^6 eV at 90% confidence level were derived. This experimental
approach provides a unique probe for axion mass at the keV--MeV range not
accessible to the other techniques.Comment: 9 pages, 4 tables, 8 figures, V2: major expansion from V
A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears
Variational principle for Kolmogorov-Petrovsky-Piskunov (KPP) minimal front
speeds provides an efficient tool for statistical speed analysis, as well as a
fast and accurate method for speed computation. A variational principle based
analysis is carried out on the ensemble of KPP speeds through spatially
stationary random shear flows inside infinite channel domains. In the regime of
small root mean square (rms) shear amplitude, the enhancement of the ensemble
averaged KPP front speeds is proved to obey the quadratic law under certain
shear moment conditions. Similarly, in the large rms amplitude regime, the
enhancement follows the linear law. In particular, both laws hold for the
Ornstein-Uhlenbeck process in case of two dimensional channels. An asymptotic
ensemble averaged speed formula is derived in the small rms regime and is
explicit in case of the Ornstein-Uhlenbeck process of the shear. Variational
principle based computation agrees with these analytical findings, and allows
further study on the speed enhancement distributions as well as the dependence
of enhancement on the shear covariance. Direct simulations in the small rms
regime suggest quadratic speed enhancement law for non-KPP nonlinearities.Comment: 28 pages, 14 figures update: fixed typos, refined estimates in
section
Fluorescent Excitation of Spectral Lines in Planetary Nebulae
Fluorescent excitation of spectral lines is demonstrated as a function of
temperature-luminosity and the distance of the emitting region from the central
stars of planetary nebulae. The electron densities and temperatures are
determined, and the method is exemplified through a detailed analysis of
spectral observations of a high excitation PN, NGC 6741, observed by Hyung and
Aller(1997). Fluorescence should also be important in the determination of
element abundances. It is suggested that the method could be generally applied
to determine or constrain the luminosity and the region of spectral emission in
other intensively radiative sources such as novae, supernovae, and active
galactic nuclei.Comment: 5 pages, 4 figures (fig.4 in color), ApJ (in press
- …
