223 research outputs found

    The Importance of Equity Finance for R&D Activity – Are There Differences Between Young and Old Companies?

    Get PDF
    This paper analyzes the importance of equity finance for the R&D activity of small and medium-sized enterprises. We use information on almost 6000 German SMEs from a company survey. Using the intensity of banking competition at the district level as instrument to control for endogeneity, we find that a higher equity ratio is conducive to more R&D for young but not for old companies. Equity may be a constraining factor for young companies which have to rely on the original equity investment of their owners since they have not yet accumulated retained earnings and can relay less on outside financing. The positive influence is found for R&D intensity but not for the decision whether to perform R&D. Equity financing is therefore especially important for the most innovative, young companies

    How exactly do networking Investments pay off? Analyzing the impact of nascent Entrepreneurs networking Investments on Access to Start-Up Resources

    Get PDF
    It is widely recognized that networks provide access to the resources necessary for founding a business. Up until now, however, the relationship between networking investments and the availability of resources has not been analyzed in depth. Using a sample of 416 nascent entrepreneurs, we address this issue, and provide evidence that networking investments lead to diminishing marginal resource returns in terms of financial, informational, emotional and contact support. Our results also show that resource returns strongly vary with resource type. While emotional support is quite easy to get, many more networking investments are needed to achieve financial support

    A search for an unexpected asymmetry in the production of e+μ− and e−μ+ pairs in proton-proton collisions recorded by the ATLAS detector at root s = 13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV

    Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and pp collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of 208 mu b(-1) and 38 mu b(-1), respectively, and pp data with a sampled integrated luminosity of 1.17 pb(-1) were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in pp collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval vertical bar eta vertical bar < 2. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The bottom muon results are the most precise measurement of b quark nuclear modification at low transverse momentum where reconstruction of B hadrons is challenging. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays
    corecore