1,574 research outputs found

    Complex structure of a DT surface with T2T^2 topology

    Get PDF
    A method of defining the complex structure(moduli) for dynamically triangulated(DT) surfaces with torus topology is proposed. Distribution of the moduli parameter is measured numerically and compared with the Liouville theory for the surface coupled to c = 0, 1 and 2 matter. Equivalence between the dynamical triangulation and the Liouville theory is established in terms of the complex structure.Comment: 3 pages, 5 ps-figures, espcrc2.sty included. Talk presented at LATTICE96(gravity

    Effective-Mass Klein-Gordon-Yukawa Problem for Bound and Scattering States

    Get PDF
    Bound and scattering state solutions of the effective-mass Klein-Gordon equation are obtained for the Yukawa potential with any angular momentum \ell. Energy eigenvalues, normalized wave functions and scattering phase shifts are calculated as well as for the constant mass case. Bound state solutions of the Coulomb potential are also studied as a limiting case. Analytical and numerical results are compared with the ones obtained before.Comment: 13 pages, 1 figur

    The basic K nuclear cluster K- pp and its enhanced formation in the p + p -> K+ + X reaction

    Full text link
    We have studied the structure of K- pp nuclear cluster comprehensively by solving this three-body system exactly in a variational method starting from the Ansatz that the Lambda(1405) resonance (Lambda*) is a K-p bound state. We have found that our original prediction for the presence of K-pp as a compact bound system with M = 2322MeV/c2,B=48MeVandGamma=60MeVremainsunchangedbyvaryingtheKbarNandNNinteractionswidelyasfarastheyreproduceLambda(1405).ThestructureofKpprevealsamolecularfeature,namely,theKinLambdaasan"atomiccenter"playsakeyroleinproducingstrongcovalentbondingwiththeotherproton.Wehaveshownthattheelementaryprocess,p+p>K++Lambda+p,whichoccursinashortimpactparameterandwithalargemomentumtransfer(Q 1.6 MeV/c2, B = 48 MeV and Gamma = 60 MeV remains unchanged by varying the Kba-rN and NN interactions widely as far as they reproduce Lambda(1405). The structure of K- pp reveals a molecular feature, namely, the K- in Lambda* as an "atomic center" plays a key role in producing strong covalent bonding with the other proton. We have shown that the elementary process, p + p -> K+ + Lambda* + p, which occurs in a short impact parameter and with a large momentum transfer (Q ~ 1.6 GeV/c), leads to unusually large self-trapping of Lambda* by the participating proton, since the Lambda*-p system exists as a compact doorway state propagating to K- pp (R{Lambda*-p} ~ 1.67 fm).Comment: 18 pages, 14 figures. Phys, Rev. C, in pres

    Nuclear Force from Lattice QCD

    Get PDF
    The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched level. The standard Wilson gauge action and the standard Wilson quark action are employed on the lattice of the size 16^3\times 24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS collaboration to study the pi pi scattering phase shift. It turns out that this method provides the NN potentials which are faithful to those obtained in the analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter wave function with the Schroedinger wave function for the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the time-independent Schroedinger equation. In this report, we restrict ourselves to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the ``central'' NN potential V_{central}(r). The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing in the present lattice set-up, our method is appeared to be quite promising in reconstructing the NN potential with lattice QCD.Comment: A talk given at the XXIV International Symposium on Lattice Field Theory (Lattice2006), Tucson, Arizona, USA, July 23-28, 2006, 3 figures, 7page

    3D Finite Volume Simulation of Accretion Discs with Spiral Shocks

    Get PDF
    We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the Simplified Flux vector Splitting (SFS) finite volume method. In our calculations, gas is assumed to be the ideal one, and we calculate the cases with gamma=1.01, 1.05, 1.1 and 1.2. The mass ratio of the mass losing star to the mass accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller gamma is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in somewhat weaker sense.Comment: 2 pages, LaTeX with 2 ps figures using crckapb.sty. To appear in the Proceedings of Numerical Astrophysics 1998, Tokyo, Japan, 10-13 March, 1998, eds. S. M. Miyama, K. Tomisaka and T. Hanawa (Kluwer Academic Publishers
    corecore