24,055 research outputs found

    Analysis of Neo-Classical Double Tearing Mode

    Get PDF

    Observation of a push force on the end face of a nm fiber taper exerted by outgoing light

    Full text link
    There are two different proposals for the momentum of light in a transparent dielectric of refractive index n: Minkowski's version nE/c and Abrahm's version E/(nc), where E and c are the energy and vacuum speed of light, respectively. Despite many tests and debates over nearly a century, momentum of light in a transparent dielectric remains controversial. In this Letter, we report a direct observation of the inward push force on the end face of a free nm fiber taper exerted by the outgoing light. Our results clearly support Abraham momentum. Our experiment also indicates an inward surface pressure on a dielectric exerted by the incident light, different from the commonly recognized pressure due to the specular reflection. Such an inward surface pressure by the incident light may be useful for precise design of the laser-induced inertially-confined fusion.Comment: 9 pages, 3 figures;Accepted for publication as a Letter in Physical Review Letters(CODE: LP11093

    Non-Markovian effect on the quantum discord

    Full text link
    We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. It implies that the quantum discord is more useful than the entanglement to describe quantum correlation involved in quantum systems.Comment: 5 pages, 5 figure

    Orbit- and Atom-Resolved Spin Textures of Intrinsic, Extrinsic and Hybridized Dirac Cone States

    Full text link
    Combining first-principles calculations and spin- and angle-resolved photoemission spectroscopy measurements, we identify the helical spin textures for three different Dirac cone states in the interfaced systems of a 2D topological insulator (TI) of Bi(111) bilayer and a 3D TI Bi2Se3 or Bi2Te3. The spin texture is found to be the same for the intrinsic Dirac cone of Bi2Se3 or Bi2Te3 surface state, the extrinsic Dirac cone of Bi bilayer state induced by Rashba effect, and the hybridized Dirac cone between the former two states. Further orbit- and atom-resolved analysis shows that s and pz orbits have a clockwise (counterclockwise) spin rotation tangent to the iso-energy contour of upper (lower) Dirac cone, while px and py orbits have an additional radial spin component. The Dirac cone states may reside on different atomic layers, but have the same spin texture. Our results suggest that the unique spin texture of Dirac cone states is a signature property of spin-orbit coupling, independent of topology

    Information Erasure and Recover in Quantum Memory

    Full text link
    We show that information in quantum memory can be erased and recovered perfectly if it is necessary. That the final states of environment are completely determined by the initial states of the system allows that an easure operation can be realized by a swap operation between system and an ancilla. Therefore, the erased information can be recoverd. When there is an irreversible process, e.g. an irreversible operation or a decoherence process, in the erasure process, the information would be erased perpetually. We present that quantum erasure will also give heat dissipation in environment. And a classical limit of quantum erasure is given which coincides with Landauer's erasure principle.Comment: PACS: 0365.Bz. 03.67.Hk;3page

    Two helices from one chiral centre – self organization of disc shaped chiral nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs) have been prepared and surfacefunctionalizedwith a mixture of 1-hexanethiol co-ligands and chiraldiscogen ligands separated from a disulfide function via a flexiblespacer. Polarized optical microscopy together with differentialscanning calorimetry showed that the organic corona of thenanocomposite forms a stable chiral discotic nematic (ND*) phasewith a wide thermal range. Synchrotron X-ray diffraction showedthat gold NPs form a superlattice with p2 plane symmetry. Analysisindicated that the corona takes up the shape of a flexiblemacrodisk. Synchrotron radiation-based circular dichroism signalsof thin films are significantly enhanced on the isotropic-LCtransition in line with the formation of a chiral nematic phase of theorganic corona. At lower temperatures the appearance of CDsignals associated with the NPs is indicative of the formation of asecond helical structure. The decreased volume required and thechiral environment of the disc ligands drives the nanoparticles intocolumns that arrange helically parallel to the shortest axis of thetwo dimensional lattice

    Effect of gauge boson mass on the phase structure of QED3_{3}

    Full text link
    Dynamical chiral symmetry breaking (DCSB) in QED3_{3} with finite gauge boson mass is studied in the framework of the rainbow approximation of Dyson-Schwinger equations. By adopting a simple gauge boson propagator ansatz at finite temperature, we first numerically solve the Dyson-Schwinger equation for the fermion self-energy to determine the chiral phase diagram of QED3_3 with finite gauge boson mass at finite chemical potential and finite temperature, then we study the effect of the finite gauge mass on the phase diagram of QED3_3. It is found that the gauge boson mass mam_{a} suppresses the occurrence of DCSB. The area of the region in the chiral phase diagram corresponding to DCSB phase decreases as the gauge boson mass mam_{a} increases. In particular, chiral symmetry gets restored when mam_{a} is above a certain critical value. In this paper, we use DCSB to describe the antiferromagnetic order and use the gauge boson mass to describe the superconducting order. Our results give qualitatively a physical picture on the competition and coexistence between antiferromagnetic order and superconducting orders in high temperature cuprate superconductors.Comment: 10 pages, 2 figure
    • …
    corecore