6 research outputs found

    Green-wood flooring adhesives

    No full text
    The protection of human health and nature is becoming increasingly important. Because of this reason, the non-toxic adhesives used for wood flooring became more important. Green adhesives used in wood flooring based on green building, eco-design, and sustainability principles are examined in this book chapter. Green buildings can provide a superior indoor environment. In order to improve indoor air quality, adhesives used in wood flooring must have low or zero volatile organic compounds (VOCs). Today, most of the adhesives are prepared from petroleum-based polymers however, these adhesives forms release formaldehyde and VOC emission. Increased environmental awareness led to the search for healthy adhesive alternatives with low emission values. Research centers have therefore sought to discover healthy adhesives by working on mostly bio-based adhesives. This book chapter discusses synthetic or renewable adhesive systems that can replace formaldehyde based adhesives. In this study, recent researches about wood flooring adhesive made in recent years are included.No sponso

    Characterization of Wood-based Industrial Biorefinery Lignosulfonates and Supercritical Water Hydrolysis Lignin

    Get PDF
    Understanding the properties of any particular biorefinery or pulping residue lignin is crucial when choosing the right lignin for the right end use. In this paper, three different residual lignin types [supercritical water hydrolysis lignin (SCWH), ammonium lignosulfonate (A-LS), and sodium lignosulfonate (S-LS)] were evaluated for their chemical structure, thermal properties and water vapor adsorption behavior. SCWH lignin was found to have a high amount of phenolic hydroxyl groups and the highest amount of beta-O-4 linkages. Combined with a low ash content, it shows potential to be used for conversion into aromatic or platform chemicals. A-LS and S-LS had more aliphatic hydroxyl groups, aliphatic double bonds and C=O structures. All lignins had available C-3/C-5 positions, which can increase reactivity towards adhesive precursors. The glass transition temperature (T-g) data indicated that the SCWH and S-LS lignin types can be suitable for production of carbon fibers. Lignosulfonates exhibited considerable higher water vapor adsorption as compared to the SCWH lignin. In conclusion, this study demonstrated that the SCWH differed greatly from the lignosulfonates in purity, chemical structure, thermal stability and water sorption behavior. SCWH lignin showed great potential as raw material for aromatic compounds, carbon fibers, adhesives or polymers. Lignosulfonates are less suited for conversion into chemicals or carbon fibers, but due to the high amount of aliphatic hydroxyl groups, they can potentially be modified or used as adhesives, dispersants, or reinforcement material in polymers. For most value-adding applications, energy-intensive purification of the lignosulfonates would be required.Open access funding provided by Linnaeus University. Venla Hemmila and Stergios Adamopoulos would like to thank the Knowledge Foundation for the financial support (project titled "New environment-friendly board materials", 2015-2019). Arantxa Eceiza thanks the Basque Government (IT776-16) and SgiKer General Services of the University of the Basque Countr
    corecore