240 research outputs found

    Simulating Cherenkov Telescope Array observation of RX J1713.7-3946

    Full text link
    We perform simulations of Cherenkov Telescope Array (CTA) observations of a young supernova remnant RX J1713.7-3946. This target is not only one of the brightest sources ever discovered in very high-energy gamma rays but also well observed in other wavebands. In X-rays, the emission is dominated by synchrotron radiation, which links directly to the existence of high-energy electrons. Radio observations of CO and HI gas have revealed a highly inhomogeneous medium surrounding the SNR, such as clumpy molecular clouds. Therefore gamma rays from hadronic interactions are naturally expected. However, the spectrum in GeV energy range measured by Fermi/LAT indicates more typical of leptonic emission from accelerated electrons. Despite lots of multi-wavelength information, the competing interpretations have led to much uncertainty in the quest of unraveling the true origin of the gamma-ray emission from RX~J1713.7--3946. CTA will achieve highest performance ever in sensitivity, angular resolution, and energy resolution. We estimate CTA capability to examine the emission mechanisms of the gamma rays through simulated spatial distribution, spectra, and their time variation.Comment: 8 pages, 3 figures. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Very High Energy Gamma Rays from PSR1706-44

    Full text link
    We have obtained evidence of gamma-ray emission above 1 TeV from PSR1706-44, using a ground-based telescope of the atmospheric \v{C}erenkov imaging type located near Woomera, South Australia. This object, a γ\gamma-ray source discovered by the COS B satellite (2CG342-02), was identified with the radio pulsar through the discovery of a 102 ms pulsed signal with the EGRET instrument of the Compton Gamma Ray Observatory. The flux of the present observation above a threshold of 1 TeV is ∼\bf \sim 1 ⋅\cdot 10−11^{-11} photons cm−2^{-2} s−1^{-1}, which is two orders of magnitude smaller than the extrapolation from GeV energies. The analysis is not restricted to a search for emission modulated with the 102 ms period, and the reported flux is for all γ\gamma-rays from PSR1706-44, pulsed and unpulsed. The energy output in the TeV region corresponds to about 10−3^{-3} of the spin down energy loss rate of the neutron star.Comment: 13 pages, latex format (article), 2 figures include

    Evidence for TeV gamma-ray emission from the shell type SNR RXJ1713.7-3946

    Get PDF
    We report the results of TeV gamma-ray observations of the shell type SNR RXJ1713.7-3946 (G347.3-0.5). The discovery of strong non-thermal X-ray emission from the northwest part of the remnant strongly suggests the existence of electrons with energies up to 100 TeV in the remnant, making the SNR a good candidate TeV gamma-ray source. We observed RXJ1713.7-3946 from May to August 1998 with the CANGAROO 3.8m atmospheric imaging Cerenkov telescope and obtained evidence for TeV gamma-ray emission from the NW rim of the remnant with the significance of 5.6 sigma. The observed TeV gamma-ray flux from the NW rim region was estimated to be (5.3 +/- 0.9[statistical] +/- 1.6[systematic]) * 10^{-12} photons cm^{-2} s^{-1} at energies >= 1.8 +/- 0.9 TeV. The data indicate that the emitting region is much broader than the point spread function of our telescope. The extent of the emission is consistent with that of hard X-rays observed by ASCA. This TeV gamma-ray emission can be attributed to the Inverse Compton scattering of the Cosmic Microwave Background Radiation by shock accelerated ultra-relativistic electrons. Under this assumption, a rather low magnetic field of 11 micro gauss is deduced for the remnant from our observation.Comment: Accepted for publication by Astronomy and Astrophysics (5 pages, 2 figures

    TeV observations of Centaurus A

    Get PDF
    We have searched for TeV gamma-rays from Centaurus A and surrounding region out to +/- 1.0 deg using the CANGAROO 3.8m telescope. No evidence for TeV gamma-ray emission was observed from the search region, which includes a number of interesting features located away from the tracking centre of our data. The 3 sigma upper limit to the flux of gamma-rays above 1.5 TeV from an extended source of radius 14' centred on Centaurus A is 1.28e-11 photons cm^-2 s^-1.Comment: 4 pages. Astroparticle Physics, accepted for publication. Some upper limits overestimated by factor 2-4 in original version astro-ph/9901316. Now correcte
    • …
    corecore