77 research outputs found

    11 x 224 Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-Ghz channel spacing

    Get PDF
    We demonstrate the generation and transmission of eleven channels with 224-Gb/s polarization-multiplexed, return to zero, 16-level quadrature amplitude modulation (POLMUX-RZ-16QAM) over 670 km of standard single mode fiber (SSMF) with 50-GHz channel spacing and a spectral efficiency of 4.2 b/s/Hz. We report a penalty of around 4.3 dB in the performance at back-to-back in comparison to the theoretical limits, and a margin of 1 dB in Q-factor below the forward error correction (FEC) limit (assumed to be at a bit error rate of 3.8x10-3) after transmission over 670 km of SSMF

    Transmission of 11 x 224 Gb/s POLMUX-RZ-16QAM over 1500 km of LongLine and pure-silica SMF

    Get PDF
    We demonstrate transmission of 11 x 224-Gb/s POLMUX-RZ-16QAM over 1500 km with a channel spacing of 50 GHz. A hybrid configuration of LongLine and pure silica fiber is used to optimize both nonlinear tolerance and Raman gain.</p

    Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN), an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant in broccoli. Here, we examined the time-course and reversibility of SFN-induced HDAC changes in human colon cancer cells.</p> <p>Results</p> <p>Cells underwent progressive G<sub>2</sub>/M arrest over the period 6-72 h after SFN treatment, during which time HDAC activity increased in the vehicle-treated controls but not in SFN-treated cells. There was a time-dependent loss of class I and selected class II HDAC proteins, with HDAC3 depletion detected ahead of other HDACs. Mechanism studies revealed no apparent effect of calpain, proteasome, protease or caspase inhibitors, but HDAC3 was rescued by cycloheximide or actinomycin D treatment. Among the protein partners implicated in the HDAC3 turnover mechanism, silencing mediator for retinoid and thyroid hormone receptors (SMRT) was phosphorylated in the nucleus within 6 h of SFN treatment, as was HDAC3 itself. Co-immunoprecipitation assays revealed SFN-induced dissociation of HDAC3/SMRT complexes coinciding with increased binding of HDAC3 to 14-3-3 and peptidyl-prolyl cis/trans isomerase 1 (Pin1). Pin1 knockdown blocked the SFN-induced loss of HDAC3. Finally, SFN treatment for 6 or 24 h followed by SFN removal from the culture media led to complete recovery of HDAC activity and HDAC protein expression, during which time cells were released from G<sub>2</sub>/M arrest.</p> <p>Conclusion</p> <p>The current investigation supports a model in which protein kinase CK2 phosphorylates SMRT and HDAC3 in the nucleus, resulting in dissociation of the corepressor complex and enhanced binding of HDAC3 to 14-3-3 or Pin1. In the cytoplasm, release of HDAC3 from 14-3-3 followed by nuclear import is postulated to compete with a Pin1 pathway that directs HDAC3 for degradation. The latter pathway predominates in colon cancer cells exposed continuously to SFN, whereas the former pathway is likely to be favored when SFN has been removed within 24 h, allowing recovery from cell cycle arrest.</p

    111 Gb/s transmission with compensation of FBG-induced phase ripple enabled by coherent detection and digital signal processing

    Get PDF
    We demonstrate that coherent detection combined with digital signal processing can completely compensate for FBG induced phase-ripple. We report penalty free transmission of 40×111-Gb/s POLMUX-RZ-DQPSK over 1,425-km of SSMF with FBG for in-line dispersion compensatio

    10x224-Gb/s POLMUX-16QAM transmission over 656 km of large-Aeff PSCF with a special efficiency of 5.6 b/s/Hz

    Get PDF
    We demonstrate the successful transmission of 10 channels with 224-Gb/s POLMUX-16QAM modulation (28 GBaud) on a 37.5-GHz wavelength grid. Using large-Aeff pure-silica-core fibers we show a 656-km transmission distance with a spectral efficiency of 5.6 b/s/Hz. We report a back-to-back performance penalty of 3.5 dB compared to theoretical limits at the forward-error correction (FEC) limit (bit-error rate of 3.8·10-3), and a margin of 0.5 dB in Q-factor with respect to the FEC-limit after 656 km of transmission

    111-Gb/s POLMUX-RZ-DQPSK Transmission over LEAF: Optical versus Electrical Dispersion Compensation

    Get PDF
    We investigate the transmission performance of 111-Gb/s POLMUX-RZ-DQPSK modulation using either optical or electrical dispersion compensation. We show that after 2000-km LEAF transmission both link configurations have a comparable nonlinear tolerance

    Fiber optics communications; (230.7405) Wavelength conversion devices; (130.3730) Lithium niobate

    Get PDF
    Abstract: We present the results of an in-depth experimental investigation about all-optical wavelength conversion of a 100-Gb/s polarization-multiplexed (POLMUX) signal. Each polarization channel is modulated at 25 Gbaud by differential quadrature phase-shift keying (DQPSK). The conversion is realized exploiting the high nonlinear χ ©2009 Optical Society of Americ

    224-Gb/s polmux-rz-16qam for next generation high capacity optical transmission systems

    No full text
    In this paper, we study the 224-Gb/s polarization multiplexed, return to zero, 16-level quadrature amplitude modulation (POLMUX-RZ-16QAM) as a candidate for next generation high capacity optical transmission systems. We discuss the main challenges associated with the generation of such multi-level optical modulation format. Furthermore, we demonstrate the generation and transmission of eleven 224-Gb/s POLMUX-RZ-16QAM channels over a transmission distance of up to 1500 km with a spectral efficiency of 4 b/s/Hz. Finally, we give our outlook on how future optical systems will evolve to realize data rates beyond 200 Gb/s per channel

    Solutions for 100-Gbit ethernet

    No full text
    Geen abstract, alleen een sheet presentati
    • …
    corecore