584 research outputs found

    A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    Full text link
    Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced in its development at all levels (simulation, user interface, etc.). An example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented, along with a detailed discussion of the system's requirements and design.Comment: Article on NiCE's Reactor Analyzer. 23 pages. Keywords: modeling, simulation, analysis, visualization, input-outpu

    Interacting many-body systems in quantum wells: Evidence for exciton-trion-electron correlations

    Get PDF
    We report on the nonlinear optical dynamical properties of excitonic complexes in CdTe modulation-doped quantum wells, due to many-body interactions among excitons, trions and electrons. These were studied by time and spectrally resolved pump-probe experiments. The results reveal that the nonlinearities induced by trions differ from those induced by excitons, and in addition they are mutually correlated. We propose that the main source of these subtle differences comes from the Pauli exclusion-principle through phase-space filling and short-range fermion exchange.Comment: 5 pages, 4 figures. accepted for publications in Phys. Rev.

    Optical spin pumping of modulation doped electrons probed by a two-color Kerr rotation technique

    Full text link
    We report on optical spin pumping of modulation electrons in CdTe-based quantum wells with low intrinsic electron density (by 10^10 cm^{-2}). Under continuous wave excitation, we reach a steady state accumulated spin density of about 10^8 cm^{-2}. Using a two-color Hanle-MOKE technique, we find a spin relaxation time of 34 ns for the localized electrons in the nearly unperturbed electron gas. Independent variation of the pump and probe energies demonstrates the presence of additional non-localized electrons in the quantum well, whose spin relaxation time is substantially shorter

    Isotropic, Nematic and Smectic A Phase Behaviour in a Fictitious Field

    Full text link
    Phase behaviours of liquid crystals under external fields, conjugate to the nematic order and smectic order, are studied within the framework of mean field approximation developed by McMillan. It is found that phase diagrams, of temperature vs interaction parameter of smectic A order, show several topologically different types caused by the external fields. The influences of the field conjugate to the smectic A phase, which is fictitious field, are precisely discussed.Comment: To be published in J. Phys. Soc. Jpn. vol.73 No.

    Zero- and one-dimensional magnetic traps for quasi-particles

    Full text link
    We investigate the possibility of trapping quasi-particles possessing spin degree of freedom in hybrid structures. The hybrid system we are considering here is composed of a semi-magnetic quantum well placed a few nanometers below a ferromagnetic micromagnet. We are interested in two different micromagnet shapes: cylindrical (micro-disk) and rectangular geometry. We show that in the case of a micro-disk, the spin object is localized in all three directions and therefore zero-dimensional states are created, and in the case of an elongated rectangular micromagnet, the quasi-particles can move freely in one direction, hence one-dimensional states are formed. After calculating profiles of the magnetic field produced by the micromagnets, we analyze in detail the possible light absorption spectrum for different micromagnet thicknesses, and different distances between the micromagnet and the semimagnetic quantum well. We find that the discrete spectrum of the localized states can be detected via spatially-resolved low temperature optical measurement.Comment: 15 pages, 9 figure

    Growth and properties of ferromagnetic In(1-x)Mn(x)Sb alloys

    Full text link
    We discuss a new narrow-gap ferromagnetic (FM) semiconductor alloy, In(1-x)Mn(x)Sb, and its growth by low-temperature molecular-beam epitaxy. The magnetic properties were investigated by direct magnetization measurements, electrical transport, magnetic circular dichroism, and the magneto-optical Kerr effect. These data clearly indicate that In(1-x)Mn(x)Sb possesses all the attributes of a system with carrier-mediated FM interactions, including well-defined hysteresis loops, a cusp in the temperature dependence of the resistivity, strong negative magnetoresistance, and a large anomalous Hall effect. The Curie temperatures in samples investigated thus far range up to 8.5 K, which are consistent with a mean-field-theory simulation of the carrier-induced ferromagnetism based on the 8-band effective band-orbital method.Comment: Invited talk at 11th International Conference on Narrow Gap Semiconductors, Buffalo, New York, U.S.A., June 16 - 20, 200

    Above-Room-Temperature Ferromagnetism in GaSb/Mn Digital Alloys

    Full text link
    Digital alloys of GaSb/Mn have been fabricated by molecular beam epitaxy. Transmission electron micrographs showed good crystal quality with individual Mn-containing layers well resolved; no evidence of 3D MnSb precipitates was seen in as-grown samples. All samples studied exhibited ferromagnetism with temperature dependent hysteresis loops in the magnetization accompanied by metallic p-type conductivity with a strong anomalous Hall effect (AHE) up to 400 K (limited by the experimental setup). The anomalous Hall effect shows hysteresis loops at low temperatures and above room temperature very similar to those seen in the magnetization. The strong AHE with hysteresis indicates that the holes interact with the Mn spins above room temperature. All samples are metallic, which is important for spintronics applications. * To whom correspondence should be addressed. E-mail: [email protected]
    • …
    corecore