28 research outputs found

    Impact of Fatty Acid Supplementation on Cognitive Performance among United States (US) Military Officers: The Ranger Resilience and Improved Performance on Phospholipid-Bound Omega-3’s (RRIPP-3) Study

    No full text
    Studies have assessed omega-3 fatty acids and cognitive decline among older adults and cognitive development among children, although less is known about cognitive or neurological effects among young adults. We examined whether omega-3 supplementation from krill oil could improve cognition and resilience among young military officers compared to a control. This double-blind, placebo-controlled trial enrolled 555 officers (mean age 23.4 ± 2.8, 98.6% male) entering the United States (US) Army Infantry Basic Officer Leaders Course (IBOLC) with the intention to complete the US Ranger Course. Volunteer participants consumed eight dietary supplements daily of krill oil containing 2.3 g omega-3 or control (macadamia nut oil) over an approximate 20-week period. Cognitive functioning, resilience, and mood were assessed during a well-rested period at approximately 14 weeks and after a battlefield simulation at 16 weeks. Blood spot samples were collected to monitor compliance and dietary intake was assessed. All hypotheses were tested using both ‘Intention to Treat’ (ITT) and ‘As Per Protocol’ (APP) approaches. Of the 555 randomized individuals, 245 (44.1%) completed the study. No statistically significant group-by-time interactions indicating treatment effect were found on any outcomes. Poor compliance was indicated by lower than expected omega-3 elevations in the treatment group, and may have contributed to a failure to detect a response

    Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    No full text
    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD

    Impaired Vitamin D Signaling in T Cells From a Family With Hereditary Vitamin D Resistant Rickets

    No full text
    The active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), mediates its immunomodulatory effects by binding to the vitamin D receptor (VDR). Here, we describe a new point mutation in the DNA-binding domain of the VDR and its consequences for 1,25(OH)(2)D(3) signaling in T cells from heterozygous and homozygous carriers of the mutation. The mutation did not affect the overall structure or the ability of the VDR to bind 1,25(OH)(2)D(3) and the retinoid X receptor. However, the subcellular localization of the VDR was strongly affected and the transcriptional activity was abolished by the mutation. In heterozygous carriers of the mutation, 1,25(OH)(2)D(3)-induced gene regulation was reduced by ~ 50% indicating that the expression level of wild-type VDR determines 1,25(OH)(2)D(3) responsiveness in T cells. We show that vitamin D-mediated suppression of vitamin A-induced gene regulation depends on an intact ability of the VDR to bind DNA. Furthermore, we demonstrate that vitamin A inhibits 1,25(OH)(2)D(3)-induced translocation of the VDR to the nucleus and 1,25(OH)(2)D(3)-induced up-regulation of CYP24A1. Taken together, this study unravels novel aspects of vitamin D signaling and function of the VDR in human T cells
    corecore