40,616 research outputs found

    Theoretical Constraints and Systematic Effects in the Determination of the Proton Form Factors

    Get PDF
    We calculate the two-photon exchange corrections to electron-proton scattering with nucleon and Δ\Delta intermediate states. The results show a dependence on the elastic nucleon and nucleon-Δ\Delta-transition form factors used as input which leads to significant changes compared to previous calculations. We discuss the relevance of these corrections and apply them to the most recent and precise data set and world data from electron-proton scattering. Using this, we show how the form factor extraction from these data is influenced by the subsequent inclusion of physical constraints. The determination of the proton charge radius from scattering data is shown to be dominated by the enforcement of a realistic spectral function. Additionally, the third Zemach moment from the resulting form factors is calculated. The obtained radius and Zemach moment are shown to be consistent with Lamb shift measurements in muonic hydrogen.Comment: minor changes, added references, version to appear in PR

    Quantum interference in deformed carbon nanotube waveguides

    Full text link
    Quantum interference (QI) in two types of deformed carbon nanotubes (CNTs), i.e., axially stretched and AFM tip-deformed CNTs, has been investigated by the pi-electron only and four-orbital tight-binding (TB) method. It is found that the rapid conductance oscillation (RCO) period is very sensitive to the applied strains, and decreases in an inverse proportion to the deformation degree, which could be used as a powerful experimental tool to detect precisely the deformation degree of the deformed CNTs. Also, the sigma-pi coupling effect is found to be negligible under axially stretched strain, while it works on the transport properties of the tip-deformed CNTs.Comment: 14 pages and 5 figure

    Contribution of Scalar Loops to the Three-Photon Decay of the Z

    Full text link
    I corrected 3 mistakes from the first version: that were an omitted Feynman integration in the function f^3_{ij}, a factor of 2 in front of log f^3_{ij} in eq.2 and an overall factor of 2 in Fig.1 c). The final result is changed drastically. Doing an expansion in the Higgs mass I show that the matrix element is identically 0 in the order (MZ/MH)^2, which is due to gauge invariance. Left with an amplitude of the order (MZ/MH)^4 the final result is that the scalar contribution to this decay rate is several orders of magnitude smaller than those of the W boson and fermions.Comment: 6 pages, plain Tex, 1 figure available under request via fax or mail, OCIP/C-93-5, UQAM-PHE-93/0

    Z-graded weak modules and regularity

    Full text link
    It is proved that if any Z-graded weak module for vertex operator algebra V is completely reducible, then V is rational and C_2-cofinite. That is, V is regular. This gives a natural characterization of regular vertex operator algebras.Comment: 9 page

    Possible DDˉD\bar{D} and BBˉB\bar{B} Molecular states in a chiral quark model

    Full text link
    We perform a systematic study of the bound state problem of DDˉD\bar{D} and BBˉB\bar{B} systems by using effective interaction in our chiral quark model. Our results show that both the interactions of DDˉD\bar{D} and BBˉB\bar{B} states are attractive, which consequently result in IG(JPC)=0+(0++)I^G(J^{PC})=0^+(0^{++}) DDˉD\bar{D} and BBˉB\bar{B} bound states.Comment: arXiv admin note: substantial text overlap with arXiv:1204.395

    Systematic analysis of group identification in stock markets

    Full text link
    We propose improved methods to identify stock groups using the correlation matrix of stock price changes. By filtering out the marketwide effect and the random noise, we construct the correlation matrix of stock groups in which nontrivial high correlations between stocks are found. Using the filtered correlation matrix, we successfully identify the multiple stock groups without any extra knowledge of the stocks by the optimization of the matrix representation and the percolation approach to the correlation-based network of stocks. These methods drastically reduce the ambiguities while finding stock groups using the eigenvectors of the correlation matrix.Comment: 9 pages, 7 figure

    Numerical simulations of negative-index refraction in wedge-shaped metamaterials

    Full text link
    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's law experiments.Comment: 18 pages, 6 figure
    corecore