3 research outputs found
The Effects of HIV Infection on Endothelial Function
Endothelial dysfunction and/or injury is pivotal to the development of cardiovascular and inflammatory pathology. Endothelial dysfunction and/or injury has been described in Human Immunodeficiency Virus (HIV) infection. Elaboration of circulating markers of endothelial activation, such as soluble adhesion molecules and procoagulant proteins, occurs in HIV infection. Certain endothelial cells, such as those lining liver sinusoids, human umbilical vein endothelial cells, bone marrow stromal endothelial cells or brain microvascular endothelial cells, have been shown to be variably permissive for HIV infection. Entry of virus into endothelial cells may occur via CD4 antigen or galactosyl-ceramide receptors. Other mechanisms of entry including chemokine receptors have been proposed. Nevertheless, endothelial activation may also occur in HIV infection either by cytokines secreted in response to mononuclear or adventitial cell activation by virus or else by the effects of the secreted HIV-associated proteins, gp 120 (envelope glycoprotein) and Tat (transactivator of viral replication) on endothelium. Enhanced adhesiveness of endothelial cells, endothelial cell proliferation and apoptosis as well as activation of cytokine secretion have all been demonstrated. Synergy between select inflammatory cytokines and viral proteins in inducing endothelial injury has been shown. In HIV infection, dysfunctional or injured endothelial cells potentiate tissue injury, inflammation and remodeling, and accelerate the development of cardiovascular disease
Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis.
Bacterial vaginosis (BV) is a dysbiosis of the vaginal flora characterized by a shift from a Lactobacillus-dominant environment to a polymicrobial mixture including Actinobacteria and gram-negative bacilli. BV is a common vaginal condition in women and is associated with increased risk of sexually transmitted infection and adverse pregnancy outcomes such as preterm birth. Gardnerella vaginalis is one of the most frequently isolated bacterial species in BV. However, there has been much debate in the literature concerning the contribution of G. vaginalis to the etiology of BV, since it is also present in a significant proportion of healthy women. Here we present a new murine vaginal infection model with a clinical isolate of G. vaginalis. Our data demonstrate that this model displays key features used clinically to diagnose BV, including the presence of sialidase activity and exfoliated epithelial cells with adherent bacteria (reminiscent of clue cells). G. vaginalis was capable of ascending uterine infection, which correlated with the degree of vaginal infection and level of vaginal sialidase activity. The host response to G. vaginalis infection was characterized by robust vaginal epithelial cell exfoliation in the absence of histological inflammation. Our analyses of clinical specimens from women with BV revealed a measureable epithelial exfoliation response compared to women with normal flora, a phenotype that, to our knowledge, is measured here for the first time. The results of this study demonstrate that G. vaginalis is sufficient to cause BV phenotypes and suggest that this organism may contribute to BV etiology and associated complications. This is the first time vaginal infection by a BV associated bacterium in an animal has been shown to parallel the human disease with regard to clinical diagnostic features. Future studies with this model should facilitate investigation of important questions regarding BV etiology, pathogenesis and associated complications