1,272 research outputs found

    Collaborative Beamforming for Distributed Wireless Ad Hoc Sensor Networks

    Full text link
    The performance of collaborative beamforming is analyzed using the theory of random arrays. The statistical average and distribution of the beampattern of randomly generated phased arrays is derived in the framework of wireless ad hoc sensor networks. Each sensor node is assumed to have a single isotropic antenna and nodes in the cluster collaboratively transmit the signal such that the signal in the target direction is coherently added in the far- eld region. It is shown that with N sensor nodes uniformly distributed over a disk, the directivity can approach N, provided that the nodes are located sparsely enough. The distribution of the maximum sidelobe peak is also studied. With the application to ad hoc networks in mind, two scenarios, closed-loop and open-loop, are considered. Associated with these scenarios, the effects of phase jitter and location estimation errors on the average beampattern are also analyzed.Comment: To appear in the IEEE Transactions on Signal Processin

    Accurate and efficient spin integration for particle accelerators

    Full text link
    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.Comment: 43 pages, 17 figure

    Quasi-dynamic Load and Battery Sizing and Scheduling for Stand-Alone Solar System Using Mixed-integer Linear Programming

    Full text link
    Considering the intermittency of renewable energy systems, a sizing and scheduling model is proposed for a finite number of static electric loads. The model objective is to maximize solar energy utilization with and without storage. For the application of optimal load size selection, the energy production of a solar photovoltaic is assumed to be consumed by a finite number of discrete loads in an off-grid system using mixed-integer linear programming. Additional constraints are battery charge and discharge limitations and minimum uptime and downtime for each unit. For a certain solar power profile the model outputs optimal unit size as well as the optimal scheduling for both units and battery charge and discharge (if applicable). The impact of different solar power profiles and minimum up and down time constraints on the optimal unit and battery sizes are studied. The battery size required to achieve full solar energy utilization decreases with the number of units and with increased flexibility of the units (shorter on and off-time). A novel formulation is introduced to model quasi-dynamic units that gradually start and stop and the quasi-dynamic units increase solar energy utilization. The model can also be applied to search for the optimal number of units for a given cost function.Comment: 6 pages, 3 figures, accepted at The IEEE Conference on Control Applications (CCA

    Reliability of Dynamic Load Scheduling with Solar Forecast Scenarios

    Full text link
    This paper presents and evaluates the performance of an optimal scheduling algorithm that selects the on/off combinations and timing of a finite set of dynamic electric loads on the basis of short term predictions of the power delivery from a photovoltaic source. In the algorithm for optimal scheduling, each load is modeled with a dynamic power profile that may be different for on and off switching. Optimal scheduling is achieved by the evaluation of a user-specified criterion function with possible power constraints. The scheduling algorithm exploits the use of a moving finite time horizon and the resulting finite number of scheduling combinations to achieve real-time computation of the optimal timing and switching of loads. The moving time horizon in the proposed optimal scheduling algorithm provides an opportunity to use short term (time moving) predictions of solar power based on advection of clouds detected in sky images. Advection, persistence, and perfect forecast scenarios are used as input to the load scheduling algorithm to elucidate the effect of forecast errors on mis-scheduling. The advection forecast creates less events where the load demand is greater than the available solar energy, as compared to persistence. Increasing the decision horizon leads to increasing error and decreased efficiency of the system, measured as the amount of power consumed by the aggregate loads normalized by total solar power. For a standalone system with a real forecast, energy reserves are necessary to provide the excess energy required by mis-scheduled loads. A method for battery sizing is proposed for future work.Comment: 6 pager, 4 figures, Syscon 201
    corecore