31 research outputs found

    USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A

    Get PDF
    BRCA1 ligase activity is tightly regulated to maintain genome stability and confer DNA double strand repair. Here the authors identify USP48 as a H2A deubiquitinating enzyme that acts as a BRCA1 E3 ligase antagonist and characterize its role during DNA repair

    Strategy for development of site-specific ubiquitin antibodies

    Get PDF
    Protein ubiquitination is a key post-translational modification regulating a wide range of biological processes. Ubiquitination involves the covalent attachment of the small protein ubiquitin to a lysine of a protein substrate. In addition to its well-established role in protein degradation, protein ubiquitination plays a role in protein-protein interactions, DNA repair, transcriptional regulation, and other cellular functions. Understanding the mechanisms and functional relevance of ubiquitin as a signaling system requires the generation of antibodies or alternative reagents that specifically detect ubiquitin in a site-specific manner. However, in contrast to other post-translational modifications such as acetylation, phosphorylation, and methylation, the instability and size of ubiquitin-76 amino acids-complicate the preparation of suitable antigens and the generation antibodies detecting such site-specific modifications. As a result, the field of ubiquitin research has limited access to specific antibodies. This severely hampers progress in understanding the regulation and function of site-specific ubiquitination in many areas of biology, specifically in epigenetics and cancer. Therefore, there is a high demand for antibodies recognizing site-specific ubiquitin modifications. Here we describe a strategy for the development of site-specific ubiquitin antibodies. Based on a recently developed antibody against site-specific ubiquitination of histone H2B, we provide detailed protocols for chemical synthesis methods for antigen preparation and discuss considerations for screening and quality control experiments.Chemical Immunolog

    Architecture, application and implementation of a digital twin of the RFID-enabled material flow in real-time for automotive intralogistics

    No full text
    RFID is used in logistics in the automotive industry to automate processes and optimise material flow. However, the data generated by RFID installations during operation offer more potential for further analyses to collect even more benefits from the technology. Therefore, in this paper, RFID data will be used to create a digital twin of the RFID-enabled material flow (DTRMF) in real-time and to programme various big data analyses. The architecture of the DTRMF must meet various qualitative requirements. Since the big data and digital twin architectures available in the literature either do not optimally fulfil all these requirements, or they are not described in enough detail to support real applications, this paper presents a new digital twin architecture for RFID-enabled material flow. This architecture consists of the data ingestion layer, data processing and analyses layer, data storage layer, visualisation layer, and the optional semantic layer. In addition, suitable technologies for the implementation of the architecture are described, and the feasibility of the architecture is demonstrated and verified by means of a case study

    Challenges and Solutions to Integrate Remote Laboratories in a Cross-University Network

    No full text
    Location-independent networking of laboratory infrastructures is opening new possibilities for teaching and learning. In order to make full use of the possibilities it makes sense to form associations and use real, partly digitized and fully digital laboratories shared across locations. The connection of different laboratories with different equipment and different conditions confronts us with technical challenges. This article presents challenges, which are faced in an international project, as well as possible technical solutions and the way to our decision

    Therapeutic targeting of preleukemia cells in a mouse model of mutant acute myeloid leukemia

    No full text
    The initiating mutations that contribute to cancer development are sometimes present in premalignant cells. Whether therapies targeting these mutations can eradicate premalignant cells is unclear. Acute myeloid leukemia (AML) is an attractive system for investigating the effect of preventative treatment because this disease is often preceded by a premalignant state (clonal hematopoiesis or myelodysplastic syndrome). In mutant knock-in mice, a model of AML development, leukemia is preceded by a period of extended myeloid progenitor cell proliferation and self-renewal. We found that this self-renewal can be reversed by oral administration of a small molecule (VTP-50469) that targets the MLL1-Menin chromatin complex. These preclinical results support the hypothesis that individuals at high risk of developing AML might benefit from targeted epigenetic therapy in a preventative setting
    corecore