9,228 research outputs found
Linear ion-trap MSn with high-resolution MS reveals structural diversity of 1-O-acylceramide family in mouse epidermis
A Family of Maximum Margin Criterion for Adaptive Learning
In recent years, pattern analysis plays an important role in data mining and
recognition, and many variants have been proposed to handle complicated
scenarios. In the literature, it has been quite familiar with high
dimensionality of data samples, but either such characteristics or large data
have become usual sense in real-world applications. In this work, an improved
maximum margin criterion (MMC) method is introduced firstly. With the new
definition of MMC, several variants of MMC, including random MMC, layered MMC,
2D^2 MMC, are designed to make adaptive learning applicable. Particularly, the
MMC network is developed to learn deep features of images in light of simple
deep networks. Experimental results on a diversity of data sets demonstrate the
discriminant ability of proposed MMC methods are compenent to be adopted in
complicated application scenarios.Comment: 14 page
Dwarf Galaxies with Ionizing Radiation Feedback. II: Spatially-resolved Star Formation Relation
We investigate the spatially-resolved star formation relation using a
galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation.
Our new implementation of stellar feedback includes ionizing radiation as well
as supernova explosions, and we handle ionizing radiation by solving the
radiative transfer equation rather than by a subgrid model. Photoheating by
stellar radiation stabilizes gas against Jeans fragmentation, reducing the star
formation rate. Because we have self-consistently calculated the location of
ionized gas, we are able to make spatially-resolved mock observations of star
formation tracers, such as H-alpha emission. We can also observe how stellar
feedback manifests itself in the correlation between ionized and molecular gas.
Applying our techniques to the disk in a galactic halo of 2.3e11 Msun, we find
that the correlation between star formation rate density (estimated from mock
H-alpha emission) and molecular hydrogen density shows large scatter,
especially at high resolutions of <~ 75 pc that are comparable to the size of
giant molecular clouds (GMCs). This is because an aperture of GMC size captures
only particular stages of GMC evolution, and because H-alpha traces hot gas
around star-forming regions and is displaced from the molecular hydrogen peaks
themselves. By examining the evolving environment around star clusters, we
speculate that the breakdown of the traditional star formation laws of the
Kennicutt-Schmidt type at small scales is further aided by a combination of
stars drifting from their birthplaces, and molecular clouds being dispersed via
stellar feedback.Comment: 16 pages, 15 figures, Accepted for publication in the Astrophysical
Journal, Image resolution greatly reduced, High-resolution version of this
article is available at http://www.jihoonkim.org/index/research.html#sfm
Biogeochemical variations at the Porcupine Abyssal Plain sustained Observatory in the northeast Atlantic Ocean, from weekly to inter-annual timescales
We present high-resolution autonomous measurements of carbon dioxide partial pressure p(CO2) taken in situ at the Porcupine Abyssal Plain sustained Observatory (PAP-SO) in the northeast Atlantic (49° N, 16.5° W; water depth of 4850 m) for the period 2010–2012. Measurements of p(CO2) made at 30 m depth on a sensor frame are compared with other autonomous biogeochemical measurements at that depth (including chlorophyll a fluorescence and nitrate concentration data) to analyse weekly to seasonal controls on p(CO2) flux in the inter-gyre region of the North Atlantic. Comparisons are also made with in situ regional time series data from a ship of opportunity and mixed layer depth (MLD) measurements from profiling Argo floats. There is a persistent under-saturation of CO2 in surface waters throughout the year which gives rise to a perennial CO2 sink. Comparison with an earlier data set collected at the site (2003–2005) confirms seasonal and inter-annual changes in surface seawater chemistry. There is year-to-year variability in the timing of deep winter mixing and the intensity of the spring bloom.The 2010–2012 period shows an overall increase in p(CO2) values when compared to the 2003–2005 period as would be expected from increases due to anthropogenic CO2 emissions. The surface temperature, wind speed and MLD measurements are similar for both periods of time. Future work should incorporate daily CO2 flux measurements made using CO2 sensors at 1 m depth and the in situ wind speed data now available from the UK Met Office Buoy
On the effect of Ti on Oxidation Behaviour of a Polycrystalline Nickel-based Superalloy
Titanium is commonly added to nickel superalloys but has a well-documented
detrimental effect on oxidation resistance. The present work constitutes the
first atomistic-scale quantitative measurements of grain boundary and bulk
compositions in the oxide scale of a current generation polycrystalline nickel
superalloy performed through atom probe tomography. Titanium was found to be
particularly detrimental to oxide scale growth through grain boundary
diffusion
Local Anisotropy of Fluids using Minkowski Tensors
Statistics of the free volume available to individual particles have
previously been studied for simple and complex fluids, granular matter,
amorphous solids, and structural glasses. Minkowski tensors provide a set of
shape measures that are based on strong mathematical theorems and easily
computed for polygonal and polyhedral bodies such as free volume cells (Voronoi
cells). They characterize the local structure beyond the two-point correlation
function and are suitable to define indices of
local anisotropy. Here, we analyze the statistics of Minkowski tensors for
configurations of simple liquid models, including the ideal gas (Poisson point
process), the hard disks and hard spheres ensemble, and the Lennard-Jones
fluid. We show that Minkowski tensors provide a robust characterization of
local anisotropy, which ranges from for vapor
phases to for ordered solids. We find that for fluids,
local anisotropy decreases monotonously with increasing free volume and
randomness of particle positions. Furthermore, the local anisotropy indices
are sensitive to structural transitions in these simple
fluids, as has been previously shown in granular systems for the transition
from loose to jammed bead packs
Dwarf Galaxies with Ionizing Radiation Feedback. I: Escape of Ionizing Photons
We describe a new method for simulating ionizing radiation and supernova
feedback in the analogues of low-redshift galactic disks. In this method, which
we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing
technique to solve the radiative transfer equation for ultraviolet photons
emitted by thousands of distinct particles on the fly. Joined with high
numerical resolution of 3.8 pc, the realistic description of stellar feedback
helps to self-regulate star formation. This new feedback scheme also enables us
to study the escape of ionizing photons from star-forming clumps and from a
galaxy, and to examine the evolving environment of star-forming gas clumps. By
simulating a galactic disk in a halo of 2.3e11 Msun, we find that the average
escape fraction from all radiating sources on the spiral arms (excluding the
central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ~20 Myr period with
a mean value of 1.1%. The flux of escaped photons from these sources is not
strongly beamed, but manifests a large opening angle of more than 60 degree
from the galactic pole. Further, we investigate the escape fraction per SFMC
particle, f_esc(i), and how it evolves as the particle ages. We discover that
the average escape fraction f_esc is dominated by a small number of SFMC
particles with high f_esc(i). On average, the escape fraction from a SFMC
particle rises from 0.27% at its birth to 2.1% at the end of a particle
lifetime, 6 Myrs. This is because SFMC particles drift away from the dense gas
clumps in which they were born, and because the gas around the star-forming
clumps is dispersed by ionizing radiation and supernova feedback. The framework
established in this study brings deeper insight into the physics of photon
escape fraction from an individual star-forming clump, and from a galactic
disk.Comment: 15 pages, 12 figures, Accepted for publication in the Astrophysical
Journal, Image resolution reduced, High-resolution version of this article is
available at http://www.jihoonkim.org/index/research.html#sfm
- …
