1,464 research outputs found

    On the Cosmic Evolution of Fe/Mg in QSO Absorption Line Systems

    Get PDF
    We investigate the variation of the ratio of the equivalent widths of the FeIIλ\lambda2600 line to the MgIIλλ\lambda\lambda2796,2803 doublet as a function of redshift in a large sample of absorption lines drawn from the JHU-SDSS Absorption Line Catalog. We find that despite large scatter, the observed ratio shows a trend where the equivalent width ratio RWFeII/WMgII\mathcal{R}\equiv W_{\rm FeII}/W_{\rm MgII} decreases monotonically with increasing redshift zz over the range 0.55z1.900.55 \le z \le 1.90. Selecting the subset of absorbers where the signal-to-noise ratio of the MgII equivalent width WMgIIW_{\rm MgII} is \ge3 and modeling the equivalent width ratio distribution as a gaussian, we find that the mean of the gaussian distribution varies as R(0.045±0.005)z\mathcal{R}\propto (-0.045\pm0.005)z. We discuss various possible reasons for the trend. A monotonic trend in the Fe/Mg abundance ratio is predicted by a simple model where the abundances of Mg and Fe in the absorbing clouds are assumed to be the result of supernova ejecta and where the cosmic evolution in the SNIa and core-collapse supernova rates is related to the cosmic star-formation rate. If the trend in R\mathcal{R} reflects the evolution in the abundances, then it is consistent with the predictions of the simple model.Comment: 10 pages, 4 figures, final version published in MNRA

    Galaxy mergers moulding the circum-galactic medium - I. The impact of a major merger

    Full text link
    Galaxies are surrounded by sizeable gas reservoirs which host a significant amount of metals: the circum-galactic medium (CGM). The CGM acts as a mediator between the galaxy and the extra-galactic medium. However, our understanding of how galaxy mergers, a major evolutionary transformation, impact the CGM remains deficient. We present a theoretical study of the effect of galaxy mergers on the CGM. We use hydrodynamical cosmological zoom-in simulations of a major merger selected from the Illustris project such that the z=0 descendant has a halo mass and stellar mass comparable to the Milky Way. To study the CGM we then re-simulated this system at a 40 times better mass resolution, and included detailed post-processing ionization modelling. Our work demonstrates the effect the merger has on the characteristic size of the CGM, its metallicity, and the predicted covering fraction of various commonly observed gas-phase species, such as H I, C IV, and O VI. We show that merger-induced outflows can increase the CGM metallicity by 0.2-0.3 dex within 0.5 Gyr post-merger. These effects last up to 6 Gyr post-merger. While the merger increases the total metal covering fractions by factors of 2-3, the covering fractions of commonly observed UV ions decrease due to the hard ionizing radiation from the active galactic nucleus, which we model explicitly. Our study of the single simulated major merger presented in this work demonstrates the significant impact that a galaxy interaction can have on the size, metallicity, and observed column densities of the CGM

    The slow flow model of dust eflux in local star-forming galaxies

    Get PDF
    We develop a dust efflux model of radiation pressure acting on dust grains which successfully reproduces the relation between stellar mass, dust opacity and star forma- tion rate observed in local star-forming galaxies. The dust content of local star-forming galaxies is set by the competition between the physical processes of dust production and dust loss in our model. The dust loss rate is proportional to the dust opacity and star formation rate. Observations of the relation between stellar mass and star formation rate at several epochs imply that the majority of local star-forming galax- ies are best characterized as having continuous star formation histories. Dust loss is a consequence of sustained interaction of dust with the radiation field generated by continuous star formation. Dust efflux driven by radiation pressure rather than dust destruction offers a more consistent physical interpretation of the dust loss mechanism. By comparing our model results with the observed relation between stellar mass, dust extinction and star formation rate in local star-forming galaxies we are able to con- strain the timescale and magnitude of dust loss. The timescale of dust loss is long and therefore dust is effluxed in a “Slow Flow". Dust loss is modest in low mass galaxies but massive galaxies may lose up to 70 80% of their dust over their lifetime. Our Slow Flow model shows that mass loss driven by dust opacity and star formation may be an important physical process for understanding normal star-forming galaxy evolution.Department of HE and Training approved lis

    Coherent manipulation of charge qubits in double quantum dots

    Full text link
    The coherent time evolution of electrons in double quantum dots induced by fast bias-voltage switches is studied theoretically. As it was shown experimentally, such driven double quantum dots are potential devices for controlled manipulation of charge qubits. By numerically solving a quantum master equation we obtain the energy- and time-resolved electron transfer through the device which resembles the measured data. The observed oscillations are found to depend on the level offset of the two dots during the manipulation and, most surprisingly, also the on initialization stage. By means of an analytical expression, obtained from a large-bias model, we can understand the prominent features of these oscillations seen in both the experimental data and the numerical results. These findings strengthen the common interpretation in terms of a coherent transfer of electrons between the dots.Comment: 18 pages, 4 figure
    corecore