19 research outputs found

    Staircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power

    Get PDF
    The performance of thermoelectric energy harvesters can be improved by nanostructures that exploit inelastic transport processes. One prototype is the three-terminal hopping thermoelectric device where electron hopping between quantum-dots are driven by hot phonons. Such three-terminal hopping thermoelectric devices have potential in achieving high efficiency or power via inelastic transport and without relying on heavy-elements or toxic compounds. We show in this work how output power of the device can be optimized via tuning the number and energy configuration of the quantum-dots embedded in parallel nanowires. We find that the staircase energy configuration with constant energy-step can improve the power factor over a serial connection of a single pair of quantum-dots. Moreover, for a fixed energy-step, there is an optimal length for the nanowire. Similarly for a fixed number of quantum-dots there is an optimal energy-step for the output power. Our results are important for future developments of high-performance nanostructured thermoelectric devices

    Rectifying the output of vibrational piezoelectric energy harvester using quantum dots

    Get PDF
    Piezoelectric energy harvester scavenges mechanical vibrations and generates electricity. Researchers have strived to optimize the electromechanical structures and to design necessary external power management circuits, aiming to deliver high power and rectified outputs ready for serving as batteries. Complex deformation of the mechanical structure results in charges with opposite polarities appearing on same surface, leading to current loss in the attached metal electrode. External power management circuits such as rectifiers comprise diodes that consume power and have undesirable forward bias. To address the above issues, we devise a novel integrated piezoelectric energy harvesting device that is structured by stacking a layer of quantum dots (QDs) and a layer of piezoelectric material. We find that the QD can rectify electrical charges generated from the piezoelectric material because of its adaptable conductance to the electrochemical potentials of both sides of the QDs layer, so that electrical current causing energy loss on the same surface of the piezoelectric material can be minimized. The QDs layer has the potential to replace external rectification circuits providing a much more compact and less power-consumption solution

    Thermal gating of charge currents with Coulomb coupled quantum dots

    No full text
    We have observed thermal gating, i.e. electrostatic gating induced by hot electrons. The effect occurs in a device consisting of two capacitively coupled quantum dots. The double dot system is coupled to a hot electron reservoir on one side (QD1), while the conductance of the second dot (QD2) is monitored. When a bias across QD2 is applied we observe a current which is strongly dependent on the temperature of the heat reservoir. This current can be either enhanced or suppressed, depending on the relative energetic alignment of the QD levels. Thus, the system can be used to control a charge current by hot electrons

    Diffusion thermopower of a serial double quantum dot

    No full text
    We have experimentally studied the diffusion thermopower of a serial double quantum dot, defined electrostatically in a GaAs/AlGaAs heterostructure. We present the thermopower stability diagram for a temperature difference 1T = (20±10)mK across the device and find a maximum thermovoltage signal of several μV in the vicinity of the triple points. Along a constant energy axis in this regime, the data show a characteristic pattern which is in agreement with Mott’s relation and can be well understood within a model of sequential transport

    Local Electrodynamics of a Disordered Conductor Model System Measured with a Microwave Impedance Microscope

    No full text
    We study the electrodynamic impedance of percolating conductors with a predefined network topology using a scanning microwave impedance microscope at gigahertz frequencies. For a given percolation number we observe strong spatial variations across a sample that correlate with the connected regions (clusters) in the network when the resistivity is low such as in aluminum. For the more-resistive material (Nb,Ti)N, the impedance becomes dominated by the local structure of the percolating network (connectivity). The results can be qualitatively understood and reproduced with a network current-spreading model based on the pseudoinverse Laplacian of the underlying network graph.QN/Klapwijk LabNetwork Architectures and ServicesQN/Afdelingsburea
    corecore