147 research outputs found

    Chordoma: The Nonsarcoma Primary Bone Tumor

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139965/1/onco1344.pd

    Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab

    Get PDF
    We evaluated neoadjuvant ipilimumab in patients with surgically operable regionally advanced melanoma in order to define markers of activity in the blood and tumor as assessed at baseline (before ipilimumab) and early on-treatment. Patients were treated with ipilimumab (10 mg/kg intravenously every 3 weeks x2 doses) bracketing surgery. Tumor and blood biospecimens were obtained at baseline and at surgery. Flow cytometry and immunohistochemistry for select biomarkers were performed. Thirty five patients were enrolled; IIIB (3; N2b), IIIC (32; N2c, N3), IV (2). Worst toxicities included Grade 3 diarrhea/colitis (5; 14%), hepatitis (2; 6%), rash (1; 3%), elevated lipase (3; 9%). Median follow up was 18 months: among 33 evaluable patients, median progression free survival (PFS) was 11 months, 95% CI (6.2-19.2). There was a significant decrease in circulating myeloid derived suppressor cells (MDSC). Greater decrease in circulating monocyte gate MDSC Lin1-/HLA-DR-/CD33+/CD11b+ was associated with improved PFS (p = 0.03). There was a significant increase in circulating regulatory T cells (Treg; CD4+CD25hi+Foxp3+) that, unexpectedly, was associated with improved PFS (HR = 0.57; p = 0.034). Baseline evidence of fully activated type I CD4+ and CD8+ antigen-specific T cell immunity against cancer-testis (NY-ESO-1) and melanocytic lineage (MART-1, gp100) antigens was detected and was significantly potentiated after ipilimumab. In tumor, there was a significant increase in CD8+ T cells after ipilimumab (p = 0.02). Ipilimumab induced increased tumor infiltration by fully activated (CD69+) CD3+/CD4+ and CD3 +/CD8+ T cells with evidence of induction/potentiation of memory T cells (CD45RO+). The change in Treg observed within the tumor showed an inverse relationship with clinical benefit and greater decrease in tumor MDSC subset Lin1-/HLA-DR-/CD33+/CD11b+ was associated with improved PFS at one year. Neoadjuvant evaluation revealed a significant immunomodulating role for ipilimumab on Treg, MDSC and effector T cells in the circulation and tumor microenvironment that warrants further pursuit in the quest for optimizing melanoma immunotherapy. © 2014 Tarhini et al

    CD8+ T cell responses in metastatic melanoma patients receiving an adenovirally antigen engineered dendritic cell vaccine +/- IFN-α

    Get PDF
    Dendritic cells (DC), the primary antigen presenting cells and stimulators of naïve immune cells, are uniquely positioned to promote anti-tumor immunity. We developed a DC vaccine which expresses three full length melanoma antigens tyrosinase, MART-1, and MAGE-A6 engineered with an Ad type 5 adenovirus “AdVTMM2” which can activate CD8+ and CD4+ T cells as well as natural killer (NK) cells. A clinical trial testing this vaccine as well as the potential effects of IFN-α administration post-vaccination has enrolled 36 patients to date (NCT01366144). Peripheral blood banked at baseline, post-DC vaccination, and after either observation or one month of high dose IFN-α was tested for anti-tumor immunity. Here, we present initial immune response testing of the 12 HLA-A2+ patients who were able to be assessed for circulating CD8+ T cell frequencies by HLA-A2-peptide dextramers. Patient PBMCs were analyzed by MHC dextramer binding assay to determine 1) the frequency of CD8+ cells specific to vaccine encoded antigens in the subset of HLA-A2+ patients and 2) potential determinant spreading to antigens not in the vaccine, 3) frequency and co-expression of the checkpoint inhibitor molecules CTLA-4, PD-1, and TIM-3 on CD8+ T cells, and 4) to characterize three NK cell subpopulations. On the CD8+ T cells, PD-1 was the checkpoint molecule most commonly expressed, while CTLA-4 was minimally expressed. TIM-3 was the checkpoint molecule most commonly expressed on all three subpopulations of NK cells. We observed that most patients developed vaccine-encoded antigen-specific responses, and a subset demonstrated determinant spreading to non-vaccine encoded antigens gp100 and/or NY-ESO-1. Expression of checkpoint molecules changed on both T and NK cells through the treatment periods, and the function (by IFNγ ELISPOT) was also assessed. This study will aid in the design of more effective dendritic cell vaccines and adjuvants for metastatic melanoma patients

    The Great Debate at 'Immunotherapy Bridge', Naples, December 5, 2019

    Get PDF
    As part of the 2019 Immunotherapy Bridge congress (December 4–5, Naples, Italy), the Great Debate session featured counterpoint views from leading experts on six topical issues in immunotherapy today. These were the use of chimeric antigen receptor T cell therapy in solid tumors, whether the Immunoscore should be more widely used in clinical practice, whether antibody-dependent cellular cytotoxicity is important in the mode of action of anticytotoxic T-lymphocyte-associated protein 4 antibodies, whether the brain is immunologically unique or just another organ, the role of microbiome versus nutrition in affecting responses to immunotherapy, and whether chemotherapy is immunostimulatory or immunosuppressive. Discussion of these important topics are summarized in this report

    The Great Debate at \u27Immunotherapy Bridge\u27, Naples, December 5, 2019.

    Get PDF
    As part of the 2019 Immunotherapy Bridge congress (December 4-5, Naples, Italy), the Great Debate session featured counterpoint views from leading experts on six topical issues in immunotherapy today. These were the use of chimeric antigen receptor T cell therapy in solid tumors, whether the Immunoscore should be more widely used in clinical practice, whether antibody-dependent cellular cytotoxicity is important in the mode of action of anticytotoxic T-lymphocyte-associated protein 4 antibodies, whether the brain is immunologically unique or just another organ, the role of microbiome versus nutrition in affecting responses to immunotherapy, and whether chemotherapy is immunostimulatory or immunosuppressive. Discussion of these important topics are summarized in this report

    Combined PDGFR and HDAC inhibition overcomes PTEN disruption in Chordoma

    Get PDF
    Background: The majority of chordomas show activation of the platelet-derived growth factor receptor (PDGFR). Based on in vitro intertumoral variation in response to recombinant PDGF protein and PDGFR inhibition, and variable tumor response to imatinib, we hypothesized that chordomas resistant to PDGFR inhibition may possess downstream activation of the pathway. Methods: Molecular profiling was performed on 23 consecutive chordoma primary tissue specimens. Primary cultures established from 20 of the 23 specimens, and chordoma cell lines, UCH-1 and UCH-2, were used for in vitro experiments. Results: Loss of heterozygosity (LOH) at the phosphatase and tensin homolog (PTEN) locus was observed in 6 specimens (26%). PTEN disruption statistically correlated with increased Ki-67 proliferation index, an established marker of poor outcome for chordoma. Compared to wild type, PTEN deficient chordomas displayed increased proliferative rate, and responded less favorably to PDGFR inhibition. PTEN gene restoration abrogated this growth advantage. Chordomas are characterized by intratumoral hypoxia and local invasion, and histone deacetylase (HDAC) inhibitors are capable of attenuating both hypoxic signaling and cell migration. The combination of PDGFR and HDAC inhibition effectively disrupted growth and invasion of PTEN deficient chordoma cells. Conclusions: Loss of heterozygosity of the PTEN gene seen in a subset of chordomas is associated with aggressive in vitro behavior and strongly correlates with increased Ki-67 proliferative index. Combined inhibition of PDGFR and HDAC attenuates proliferation and invasion in chordoma cells deficient for PTEN

    MGMT gene promoter methylation correlates with tolerance of temozolomide treatment in melanoma but not with clinical outcome

    Get PDF
    BACKGROUND: Despite limited clinical efficacy, treatment with dacarbazine or temozolomide (TMZ) remains the standard therapy for metastatic melanoma. In glioblastoma, promoter methylation of the counteracting DNA repair enzyme O(6)-methylguanine-DNA-methyltransferase (MGMT) correlates with survival of patients exposed to TMZ in combination with radiotherapy. For melanoma, data are limited and controversial. METHODS: Biopsy samples from 122 patients with metastatic melanoma being treated with TMZ in two multicenter studies of the Dermatologic Cooperative Oncology Group were investigated for MGMT promoter methylation. We used the COBRA (combined bisulphite restriction analysis) technique to determine aberrant methylation of CpG islands in small amounts of genomic DNA isolated from paraffin-embedded tissue sections. To detect aberrant methylation, bisulphite-treated DNA was amplified by PCR, enzyme restricted, and visualised by gel electrophoresis. RESULTS: Correlation with clinical data from 117 evaluable patients in a best-response evaluation indicated no statistically significant association between MGMT promoter methylation status and response. A methylated MGMT promoter was observed in 34.8% of responders and 23.4% of non-responders (P=0.29). In addition, no survival advantage for patients with a methylated MGMT promoter was detectable (P=0.79). Interestingly, we found a significant correlation between MGMT methylation and tolerance of therapy. Patients with a methylated MGMT promoter had more severe adverse events, requiring more TMZ dose reductions or discontinuations (P=0.007; OR 2.7 (95% CI: 1.32-5.7)). Analysis of MGMT promoter methylation comparing primaries and different metastases over the clinical course revealed no statistical difference (P=0.49). CONCLUSIONS: In advanced melanoma MGMT promoter, methylation correlates with tolerance of therapy, but not with clinical outcome

    A phase II study of cell cycle inhibitor UCN-01 in patients with metastatic melanoma: a California Cancer Consortium trial

    Get PDF
    Background Genetic abnormalities in cell cycle control are common in malignant melanoma. UCN-01 (7-hydroxystaurosporine) is an investigational agent that exhibits antitumor activity by perturbing the cancer cell cycle. A patient with advanced melanoma experienced a partial response in a phase I trial of single agent UCN-01. We sought to determine the activity of UCN-01 against refractory metastatic melanoma in a phase II study. Patients and methods Patients with advanced melanoma received UCN-01 at 90 mg/m2 over 3 h on cycle 1, reduced to 45 mg/m2 over 3 h for subsequent cycles, every 21 days. Primary endpoint was tumor response. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). A two-stage (17 + 16), single arm phase II design was employed. A true response rate of ≥20% (i.e., at least one responder in the first stage, or at least four responders overall) was to be considered promising for further development of UCN-01 in this setting. Results Seventeen patients were accrued in the first stage. One patient was inevaluable for response. Four (24%) patients had stable disease, and 12 (71%) had disease progression. As there were no responders in the first stage, the study was closed to further accrual. Median PFS was 1.3 months (95% CI, 1.2–3.0) while median OS was 7.3 months (95% CI, 3.4–18.4). One-year and two year OS rates were 41% and 12%, respectively. A median of two cycles were delivered (range, 1–18). Grade 3 treatment-related toxicities include hyperglycemia (N = 2), fatigue (N = 1), and diarrhea (N = 1). One patient experienced grade 4 creatinine elevation and grade 4 anemia possibly due to UCN-01. No dose modification was required as these patients had disease progression. Conclusion Although well tolerated, UCN-01 as a single agent did not have sufficient clinical activity to warrant further study in refractory melanoma

    Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells

    Get PDF
    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed
    corecore