11 research outputs found

    PTPN7 (protein tyrosine phosphatase, non-receptor type 7)

    Get PDF
    Review on PTPN7 (protein tyrosine phosphatase, non-receptor type 7), with data on DNA, on the protein encoded, and where the gene is implicated

    Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis)

    No full text
    Here, we aimed to investigate potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, as gills are directly facing seawater and the changing pH (predicted to be reduced from 8.1 to 7.7 by 2100). The AMP activity of gill and haemocyte extracts was compared at pH 6.0, 7.7 and 8.1, with a radial diffusion assay against Escherichia coli. The activity of the gill extracts was not affected by pH, while it was significantly reduced with increasing pH in the haemocyte extracts. Gill extracts were also tested against different species of Vibrio (V. parahaemolyticus Vibrio tubiashii, V. splendidus and V. alginoyticus) at pH 7.7 and 8.1. The metabolic activity of the bacteria decreased by 65-90%, depending on species of bacteria, but was, as in the radial diffusion assay, not affected by pH. The results indicated that AMPs from gills are efficient in a broad pH-range. However, when mussels were pre-exposed for pH 7.7 for four month the gill extracts presented significantly lower inhibit of bacterial growth. A full in-depth proteome investigation of gill extracts, using LC-Orbitrap MS/MS technique, showed that among previously described AMPs from haemocytes of Mytilus, myticin A was found up-regulated in response to lipopolysaccharide, 3 h post injection. Sporadic occurrence of other immune related peptides/proteins also pointed to a rapid response (0.5?3 h p.i.). Altogether, our results indicate that the gills of blue mussels constitute an important first line defence adapted to act at the pH of seawater. The antimicrobial activity of the gills is however modulated when mussels are under the pressure of ocean acidification, which may give future advantages for invading pathogens

    beta 2-syntrophin and Par-3 promote an apicobasal Rac activity gradient at cell-cell junctions by differentially regulating Tiam1 activity

    Get PDF
    Although Rac and its activator Tiam1 are known to stimulate cell-cell adhesion, the mechanisms regulating their activity in cell-cell junction formation are poorly understood. Here, we identify beta 2-syntrophin as a Tiam1 interactor required for optimal cell-cell adhesion. We show that during tight-junction (TJ) assembly beta 2-syntrophin promotes Tiam1-Rac activity, in contrast to the function of the apical determinant Par-3 whose inhibition of Tiam1-Rac activity is necessary for TJ assembly. We further demonstrate that beta 2-syntrophin localizes more basally than Par-3 at cell-cell junctions, thus generating an apicobasal Rac activity gradient at developing cell-cell junctions. Targeting active Rac to TJs shows that this gradient is required for optimal TJ assembly and apical lumen formation. Consistently, beta 2-syntrophin depletion perturbs Tiam1 and Rac localization at cell-cell junctions and causes defects in apical lumen formation. We conclude that beta 2-syntrophin and Par-3 fine-tune Rac activity along cell-cell junctions controlling TJ assembly and the establishment of apicobasal polariy

    Phosphotyrosine profiling of curcumin-induced signaling

    No full text
    BACKGROUND: Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS: Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS: The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12014-016-9114-0) contains supplementary material, which is available to authorized users
    corecore