21,552 research outputs found

    Tunable Exchange Interaction in Quantum Dot Devices

    Full text link
    We theoretically discuss the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between semiconductor quantum dots (QDs). When each QD having a local spin is coupled to the conduction electrons in semiconductors, an indirect exchange interaction, i.e., the RKKY interaction, is induced between two local spins. The RKKY interaction between QDs, which is mediated by the Fermi sea in semiconductors, is modulated by changing the Fermi energy, and the magnitude or even the sign of the exchange interaction can be tuned, which leads to a tunable magnetic transition in QD devices. We estimate the magnitude of the RKKY interaction in QDs as a function of the electron density and the inter-dot distance

    A Canonical Ensemble Approach to the Fermion/Boson Random Point Processes and its Applications

    Get PDF
    We introduce the boson and the fermion point processes from the elementary quantum mechanical point of view. That is, we consider quantum statistical mechanics of canonical ensemble for a fixed number of particles which obey Bose-Einstein, Fermi-Dirac statistics, respectively, in a finite volume. Focusing on the distribution of positions of the particles, we have point processes of the fixed number of points in a bounded domain. By taking the thermodynamic limit such that the particle density converges to a finite value, the boson/fermion processes are obtained. This argument is a realization of the equivalence of ensembles, since resulting processes are considered to describe a grand canonical ensemble of points. Random point processes corresponding to para-particles of order two are discussed as an application of the formulation. A statistics of a system of composite particles at zero temperature are also considered as a model of determinantal random point processes.Comment: 26pages, Some typos are corrected, to be published in Commun. Math. Phy

    A Random Point Field related to Bose-Einstein Condensation

    Get PDF
    The random point field which describes the position distribution of the system of ideal boson gas in a state of Bose-Einstein condensation is obtained through the thermodynamic limit. The resulting point field is given by convolution of two independent point fields: the so called boson process whose generating functional is represented by inverse of the Fredholm determinant for an operator related to the heat operator and the point field whose generating functional is represented by a resolvent of the operator. The construction of the latter point field in an abstract formulation is also given.Comment: 21 page

    Double-q\it q Order in a Frustrated Random Spin System

    Full text link
    We use the three-dimensional Heisenberg model with site randomness as an effective model of the compound Sr(Fe1x_{1-x}Mnx_x)O2_2. The model consists of two types of ions that correspond to Fe and Mn ions. The nearest-neighbor interactions in the ab-plane are antiferromagnetic. The nearest-neighbor interactions along the c-axis between Fe ions are assumed to be antiferromagnetic, whereas other interactions are assumed to be ferromagnetic. From Monte Carlo simulations, we confirm the existence of the double-q\boldsymbol{q} ordered phase characterized by two wave numbers, (πππ)(\pi\pi\pi) and (ππ0)(\pi\pi0). We also identify the spin ordering pattern in the double-q\boldsymbol{q} ordered phase.Comment: 5pages, 3figure

    Fano-Kondo interplay in a side-coupled double quantum dot

    Full text link
    We investigate low-temperature transport characteristics of a side-coupled double quantum dot where only one of the dots is directly connected to the leads. We observe Fano resonances, which arise from interference between discrete levels in one dot and the Kondo effect, or cotunneling in general, in the other dot, playing the role of a continuum. The Kondo resonance is partially suppressed by destructive Fano interference, reflecting novel Fano-Kondo competition. We also present a theoretical calculation based on the tight-binding model with slave boson mean field approximation, which qualitatively reproduces the experimental findings.Comment: 4 pages, 4 figure

    Multiobjective Decision Making - Utility Theoretic Approach

    Get PDF
    One of the difficult problems in decision analysis relates to the situation, when the decision must be undertaken by a committee. There exist several formalizations of decision making process based on the utility function approach. This approach is however very difficult to apply in the group decision case, since the number of coefficients characterizing the utility function is very high and it is practically impossible to directly identify such utility function. Therefore, reduction of dimensionality of the parameter space is necessary. In this paper a concept of convex dependence between two conflicting decision makers is presented. This concept was effectively used by the author to develop a decomposition principle of the group utility function as well as to formulate the conditions necessary to perform such a decomposition. The concept was successfully applied for a practical example

    Observational Test of Environmental Effects on The Local Group Dwarf Spheroidal Galaxies

    Get PDF
    In this paper, we examine whether tidal forces exerted by the Galaxy or M31 have an influence on the Local Group dwarf spheroidal galaxies (dSphs) which are their companions. We focus on the surface brightness profiles of the dSphs, especially their core radii because it is suggested based on the numerical simulations that tidal disturbance can make core radii extended. We examine the correlation for the dSphs between the distances from their parent galaxy (the Galaxy or M31) and the compactnesses of their surface brightness profiles by using a parameter ``C'' defined newly in this paper. Consequently, we find no significant correlation. We make some remarks on the origin of this result by considering three possible scenarios; tidal picture, dark matter picture, and heterogeneity of the group of dSphs, each of which has been often discussed to understand fundamental properties and formation processes of dSphs.Comment: 14 pages LaTeX, 2 PostScript figures, to appear in ApJ Letter

    Singlet-triplet splitting, correlation and entanglement of two electrons in quantum dot molecules

    Full text link
    Starting with an accurate pseudopotential description of the single-particle states, and following by configuration-interaction treatment of correlated electrons in vertically coupled, self-assembled InAs/GaAs quantum dot-molecules, we show how simpler, popularly-practiced approximations, depict the basic physical characteristics including the singlet-triplet splitting, degree of entanglement (DOE) and correlation. The mean-field-like single-configuration approaches such as Hartree-Fock and local spin density, lacking correlation, incorrectly identify the ground state symmetry and give inaccurate values for the singlet-triplet splitting and the DOE. The Hubbard model gives qualitatively correct results for the ground state symmetry and singlet-triplet splitting, but produces significant errors in the DOE because it ignores the fact that the strain is asymmetric even if the dots within a molecule are identical. Finally, the Heisenberg model gives qualitatively correct ground state symmetry and singlet-triplet splitting only for rather large inter-dot separations, but it greatly overestimates the DOE as a consequence of ignoring the electron double occupancy effect.Comment: 13 pages, 9 figures. To appear in Phys. Rev.

    A two micron polarization survey toward dark clouds

    Get PDF
    A near infrared (2.2 micron) polarization survey of about 190 sources was conducted toward nearby dark clouds. The sample includes both background field stars and embedded young stellar objects. The aim is to determine the magnetic field structure in the densest regions of the dark clouds and study the role of magnetic fields in various phases of star formation processes, and to study the grain alignment efficiency in the dark cloud cores. From the polarization of background field stars and intrinsically unpolarized embedded sources, the magnetic field structure was determined in these clouds. From the intrinsic polarization of young stellar objects, the spatial distribution was determined of circumstellar dust around young stars. Combining the perpendicularity between the disks and magnetic fields with perpendicularity between the cloud elongation and magnetic fields, it is concluded that the magnetic fields might have dominated nearly all aspects of cloud dynamics, from the initial collapse of the clouds right through to the formation of disks/tori around young stars in these low to intermediate mass star forming clouds of the Taurus, Ophiuchus, and Perseus
    corecore