196 research outputs found

    Differential expression of basement membrane collagen-IV alpha l to alpha 6 chains during oral carcinogenes

    Get PDF
    This study aimed to resolve if basement membrane (BM) collagen alpha chains undergo remodeling during oral. carcinogenesis. Using immunohistochemistry and transmission electron microscopy, we found that BMs in oral epithelial dysplasias (OED: mild, n=10; moderate, n=10; severe, n=10) and carcinoma in situ (CIS) (n=10) differed from normal mucosa (n=6) and oral epithelial hyperplasia (n=5) in showing: (1) excessive lamina densa-like material ultrastructurally, and (2) stronger immunoexpression for alpha 5(IV) than for alpha 1(IV), alpha 2(IV), and alpha 6(IV) chains-findings that implicate these molecules' role as an adhesive template for the attachment and persistence of basal dysplastic cells. Incipient loss of BM integrity in CIS, where alpha 5(IV)/alpha 6(IV) chains were more frequently absent than alpha 1(IV)/alpha 2(IV) chains, suggests that alpha(IV) network disruption is crucial for progression of dysplastic cells into the extracellular compartment, marking transition into the invasive phase. In carcinomatous BM, the disappearance of alpha(IV) chains was more severe in poorly differentiated oral squamous cell carcinoma (OSCC) (n=10) than in well-differentiated OSCC (n=10). In all samples examined, alpha 3(IV) and alpha 4(IV) chains were absent. These findings taken together suggest that BM collagen-IV alpha chains undergo remodeling where selective increase and loss of these molecules are probably early and late events, respectively, during progression of oral dysplasia to cancer. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Localization of oxytalan fiber, type III collagen and BMP family in conventional and desmoplastic ameloblastoma

    Get PDF
    The histologic hallmark distinguishing desmoplastic ameloblastoma (DA) from conventional ameloblastoma (CA) is its pronounced stromal desmoplasia, and this formed the basis of this investigation. To elucidate the stromal characteristics, localization patterns of oxytalan fibers, type III collagen and BMP family in DA (n=8) was compared with CA (n=24), and periodontal ligament (PL) (n=8). Oxytalan fibers formed apico-occlusal bundles in PL, thick radial bundles around tumor nests in DA, and as scanty fibers in CA. Type III collagen was identified in PL, strongly expressed in DA stroma, but weakly in CA. BMP-2, -3, -4 and -7 expression patterns in tumor epithelium and stroma were more pronounced in DA (including sites of bone formation), than CA. No immunoreactivity for BMP-5 and -6 were detected. Current findings suggest that the stroma in DA is neoplastic and derived from odontogenic ectomesenchyme, and recommends its reclassification as an odontogenic epithelial-ectomesenchymal neoplasm

    Potential for Tumorigenesis and Repair of Osteochondral Defects by iPS Cell Transplantation in Rat

    Get PDF
    Abstract Articular cartilage repair remains a challenge in the field of orthopedic medicine. Cell-based therapy for cartilage repair, such as autologous chondrocyte implantation, was established in the 1990s. However, the issue of the source from which the lesion-targeting cells are harvested remains a limitation of this approach as larger lesions require more cells for repair, and thus, more healthy tissue must be damaged to harvest the needed cells. Reprogramming of induced pluripotent stem (iPS) cells is a promising tool for cell-based regenerative therapy because of their proliferative capacity and pluripotency; however, these characteristics also create a risk of tumorigenesis. This study aimed to determine the probability of iPS cell-derived tumor occurrence as a function of injection or transplantation site, and to assess whether transplanted iPS cells can promote cartilage defect repair. Pluripotent mouse iPS cells (5x10 6 cells/ml) were subcutaneously injected or transplanted into experimentally induced lesions in the knee cartilage of immunodeficient rats. Subcutaneous teratoma formation was observed in 30% of animals (3 of 10) at 4weeks, and 41% of animals (7 of 17) at 12 weeks after iPS cell injection. Cartilage repair as indicated by modified Wakitani's score was similar in the cell-free group and in the iPS cell implantation group at 4 weeks [11.8 ± 1.8 (n = 8) vs. 10.3 ± 2.8 (n = 18)]. iPS cell implantation yielded a score of 7.8 ± 2.0 (n = 10) at 12 weeks, significantly better than the cell-free group [10.5 ± 0.6 (n = 4)]. There was no macro-or microscopic evidence of tumor formation at the cartilage repair site after iPS cell implantation. Although we could not use the iPS cells directly for cartilage repair, the results of our study indicate the potential for a new therapy for cartilage repair by developing iPS reprogramming technology

    The Wnt Antagonist Frzb-1 Regulates Chondrocyte Maturation and Long Bone Development during Limb Skeletogenesis

    Get PDF
    AbstractThe Wnt antagonist Frzb-1 is expressed during limb skeletogenesis, but its roles in this complex multistep process are not fully understood. To address this issue, we determined Frzb-1 gene expression patterns during chick long bone development and carried out gain- and loss-of-function studies by misexpression of Frzb-1, Wnt-8 (a known Frzb-1 target), or different forms of the intracellular Wnt mediator LEF-1 in developing limbs and cultured chondrocytes. Frzb-1 expression was quite strong in mesenchymal prechondrogenic condensations and then characterized epiphyseal articular chondrocytes and prehypertrophic chondrocytes in growth plates. Virally driven Frzb-1 misexpression caused shortening of skeletal elements, joint fusion, and delayed chondrocyte maturation, with consequent inhibition of matrix mineralization, metalloprotease expression, and marrow/bone formation. In good agreement, misexpression of Frzb-1 or a dominant-negative form of LEF-1 in cultured chondrocytes maintained the cells at an immature stage. Instead, misexpression of Wnt-8 or a constitutively active LEF-1 strongly promoted chondrocyte maturation, hypertrophy, and calcification. Immunostaining revealed that the distribution of endogenous Wnt mediator β-catenin changes dramatically in vivo and in vitro, from largely cytoplasmic in immature proliferating and prehypertrophic chondrocytes to nuclear in hypertrophic mineralizing chondrocytes. Misexpression of Frzb-1 prevented β-catenin nuclear relocalization in chondrocytes in vivo or in vitro. The data demonstrate that Frzb-1 exerts a strong influence on limb skeletogenesis and is a powerful and direct modulator of chondrocyte maturation, phenotype, and function. Phases of skeletogenesis, such as terminal chondrocyte maturation and joint formation, appear to be particularly dependent on Wnt signaling and thus very sensitive to Frzb-1 antagonistic action

    Invasive characteristics of human prostatic epithelial cells: understanding the metastatic process

    Get PDF
    Prostate cancer has a predilection to metastasise to the bone marrow stroma (BMS) by an as yet uncharacterised mechanism. We have defined a series of coculture models of invasion, which simulate the blood/BMS boundary and allow the elucidation of the signalling and mechanics of trans-endothelial migration within the complex bone marrow environment. Confocal microscopy shows that prostate epithelial cells bind specifically to bone marrow endothelial-to-endothelial cell junctions and initiate endothelial cell retraction. Trans-endothelial migration proceeds via an epithelial cell pseudopodial process, with complete epithelial migration occurring after 232±43 min. Stromal-derived factor-1 (SDF-1)/CXCR4 signalling induced PC-3 to invade across a basement membrane although the level of invasion was 3.5-fold less than invasion towards BMS (P=0.0007) or bone marrow endothelial cells (P=0.004). Maximal SDF-1 signalling of invasion was completely inhibited by 10 μM of the SDF-1 inhibitor T140. However, 10 μM T140 only reduced invasion towards BMS and bone marrow endothelial cells by 59% (P=0.001) and 29% (P=0.011), respectively. This study highlights the need to examine the potential roles of signalling molecules and/or inhibitors, not just in single-cell models but in coculture models that mimic the complex environment of the bone marrow

    A pigmented calcifying cystic odontogenic tumor associated with compound odontoma: a case report and review of literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pigmented intraosseous odontogenic lesions are rare with only 47 reported cases in the English literature. Among them, pigmented calcifying cystic odontogenic tumor, formerly known as calcifying odontogenic cyst, is the most common lesion with 20 reported cases.</p> <p>Methods</p> <p>A case of pigmented calcifying cystic odontogenic tumor associated with odontoma occurring at the mandibular canine-premolar region of a young Japanese boy is presented with radiographic, and histological findings. Special staining, electron microscopic study and immunohistochemical staining were also done to characterize the pigmentation.</p> <p>Results</p> <p>The pigments in the lesion were confirmed to be melanin by Masson-Fontana staining and by transmission electron microscopy. The presence of dendritic melanocytes within the lesion was also demonstrated by S-100 immunostaining.</p> <p>Conclusion</p> <p>The present case report of pigmented calcifying cystic odontogenic tumor associated with odontoma features a comprehensive study on melanin and melanocytes, including histochemical, immunohistochemical and transmission electron microscopic findings.</p

    Crosstalk between Chemokine Receptor CXCR4 and Cannabinoid Receptor CB2 in Modulating Breast Cancer Growth and Invasion

    Get PDF
    Cannabinoids bind to cannabinoid receptors CB(1) and CB(2) and have been reported to possess anti-tumorigenic activity in various cancers. However, the mechanisms through which cannabinoids modulate tumor growth are not well known. In this study, we report that a synthetic non-psychoactive cannabinoid that specifically binds to cannabinoid receptor CB(2) may modulate breast tumor growth and metastasis by inhibiting signaling of the chemokine receptor CXCR4 and its ligand CXCL12. This signaling pathway has been shown to play an important role in regulating breast cancer progression and metastasis.We observed high expression of both CB(2) and CXCR4 receptors in breast cancer patient tissues by immunohistochemical analysis. We further found that CB(2)-specific agonist JWH-015 inhibits the CXCL12-induced chemotaxis and wound healing of MCF7 overexpressing CXCR4 (MCF7/CXCR4), highly metastatic clone of MDA-MB-231 (SCP2) and NT 2.5 cells (derived from MMTV-neu) by using chemotactic and wound healing assays. Elucidation of the molecular mechanisms using various biochemical techniques and confocal microscopy revealed that JWH-015 treatment inhibited CXCL12-induced P44/P42 ERK activation, cytoskeletal focal adhesion and stress fiber formation, which play a critical role in breast cancer invasion and metastasis. In addition, we have shown that JWH-015 significantly inhibits orthotopic tumor growth in syngenic mice in vivo using NT 2.5 cells. Furthermore, our studies have revealed that JWH-015 significantly inhibits phosphorylation of CXCR4 and its downstream signaling in vivo in orthotopic and spontaneous breast cancer MMTV-PyMT mouse model systems.This study provides novel insights into the crosstalk between CB(2) and CXCR4/CXCL12-signaling pathways in the modulation of breast tumor growth and metastasis. Furthermore, these studies indicate that CB(2) receptors could be used for developing innovative therapeutic strategies against breast cancer

    A spindle cell carcinoma presenting with osseous metaplasia in the gingiva: a case report with immunohistochemical analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spindle cell carcinoma (SpCC) is a rare, high malignant variant of squamous cell carcinoma (SCC), which shows biphasic proliferation of conventional SCC component and malignant spindle shape cells with sarcomatous appearance.</p> <p>Methods</p> <p>A case of Spindle cell carcinoma with bone-like calcified materials, occurring at the mandibular molar region of 71-years-old Japanese male patient was presented with gross finding, histological findings and MRI image. To identify the characteristics of the bone-like materials, immunohistochemistry were performed.</p> <p>Results</p> <p>Histologically, the cancer cells were composed of spindle cells and epithelial cells which form nests with prominent keratinization. Histological findings showed typical histology of the SpCC, however, as an uncommon finding, spatters of calcified, bone-like materials were observed in between the cancer cells. Immunohistochemistry revealed that cancer cells were positive for cytokeratins and vimentin to a varying degree and negative for Desmin, S-100, Osteopontin, BMP-2 or BMP-4. These findings implied that the calcified materials were formed by metaplasia of the stromal cells.</p> <p>Discussion</p> <p>Bone-like materials formation by osseous and/or cartilaginous metaplasia of the stroma in the carcinoma has been reported. However, the detailed mechanism of these metaplasia and affection on the clinical feature, prognosis and therapies are not well established. In summary, we presented an unique case of SpCC, which has not been described in the literature.</p

    Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo

    Get PDF
    The chemokine CXCL12/SDF-1 and its receptor CXCR4 have been implicated in invasion, survival and proliferation of carcinoma cells. Recently, CXCR7 was identified as a second receptor for CXCL12. We observed that CXCL12 promoted proliferation of CT26 colon and KEP1 mammary carcinoma cells, and this was blocked when CXCR7 was downregulated by ‘intrakines' or RNAi, but not by CXCR4 inhibitors. The K1R mutant of CXCL12, which acts as a CXCR4 antagonist, also promoted proliferation through CXCR7 and is therefore a selective CXCR7 agonist. The effect of CXCR7 was not due to reduced apoptosis, and CXCR7 mediated chemotaxis of the carcinoma cells towards CXCL12. These results differ from those in a previous report on other carcinoma cells. We conclude that CXCL12 can be a potent growth factor for carcinoma cells by acting on CXCR7. Nevertheless, we observed no effect of complete and stable CXCR7 suppression on the growth of s.c. tumours or lung metastases of KEP1 and CT26 cells. A CXCR7 inhibitor has been reported to reduce growth of other tumours. Our results indicate that this inhibitor may not be applicable to therapy of all carcinomas
    corecore