672 research outputs found

    Properties of an equilibrium hadron gas subjected to the adiabatic longitudinal expansion

    Full text link
    We consider an ideal gas of massive hadrons in thermal and chemical equilibrium. The gas expands longitudinally in an adiabatic way. This evolution for a baryonless gas reduces to a hydrodynamic expansion. Cooling process is parametrized by the sound velocity. The sound velocity is temperature dependent and is strongly influenced by hadron mass spectrum.Comment: 7pages, 7 figures-- uucoded file of figures appended at the end, separated from the paper by lines with many dashe

    Boundary and expansion effects on two-pion correlation functions in relativistic heavy-ion collisions

    Get PDF
    We examine the effects that a confining boundary together with hydrodynamical expansion play on two-pion distributions in relativistic heavy-ion collisions. We show that the effects arise from the introduction of further correlations due both to collective motion and the system's finite size. As is well known, the former leads to a reduction in the apparent source radius with increasing average pair momentum K. However, for small K, the presence of the boundary leads to a decrease of the apparent source radius with decreasing K. These two competing effects produce a maximum for the effective source radius as a function of K.Comment: 6 pages, 5 Eps figures, uses RevTeX and epsfi

    Hydrodynamical assessment of 200 AGeV collisions

    Full text link
    We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizeable transverse flow deve- lops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the over- population of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex, dvips, TPR-94-5 and BNL-(no number yet

    Kaon and Antikaon Production in Heavy Ion Collisions at 1.5 AGeV

    Full text link
    At the Kaon Spectrometer KaoS at SIS, GSI the production of kaons and antikaons in heavy ion reactions at a beam energy of 1.5 AGeV has been measured for the collision systems Ni+Ni and Au+Au. The K-/K+ ratio is found to be constant for both systems and as a function of impact parameter but the slopes of K+ and K- spectra differ for all impact parameters. Furthermore the respective polar angle distributions will be presented as a function of centrality.Comment: 4 pages, 4 figures, SQM2001 in Frankfurt, Sept.2001, submitted to Journal of Physics

    K+ and K- production in heavy-ion collisions at SIS-energies

    Full text link
    The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation function for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.Comment: invited talk given at the SQM2003 conference in Atlantic Beach, USA (March 2003), to be published in Journal of Physics G, 10pages, 7 figure

    Evidence for Different Freeze-Out Radii of High- and Low-Energy Pions Emitted in Au+Au Collisions at 1 GeV/nucleon

    Full text link
    Double differential production cross sections of negative and positive pions and the number of participating protons have been measured in central Au+Au collisions at 1 GeV per nucleon incident energy. At low pion energies the pi^- yield is strongly enhanced over the pi^+ yield. The energy dependence of the pi^-/pi^+ ratio is assigned to the Coulomb interaction of the charged pions with the protons in the reaction zone. The deduced Coulomb potential increases with increasing pion c.m. energy. This behavior indicates different freeze-out radii for different pion energies in the c.m.~frame.Comment: IKDA is the Institute for Nuclear Physics in Darmstadt/German

    Particle Production at the SPS and the QCD Phase Diagram

    Full text link
    Recent results of particle production in the energy regime of the CERN-SPS are reviewed. In order to collect information on the properties of the QCD phase diagram systematic studies of the system size and the energy dependence of particle production in heavy ion collisions have been performed. Net-baryon distributions and results on strangeness production are discussed. The system size dependence of many observables can be understood in the core-corona approach, which has implications on the possibility to use system size as a control parameter to study different areas of the phase diagram. Recent attempts to search for a critical point, such as multiplicity fluctuations and the transverse mass dependence of anti-baryon/baryon ratios are reviewed.Comment: Proccedings of 26th Winter Workshop on Nuclear Dynamics, 9 pages, 7 figure

    Rapidity losses in heavy-ion collisions from AGS to RHIC energies

    Full text link
    We study the rapidity losses in central heavy-ion collisions from AGS to RHIC energies with the mean rapidity determined from the projectile net-baryon distribution after collisions. The projectile net-baryon distribution in the full rapidity range was obtained by removing the target contribution phenomenologically at forward rapidity region from the experimental net-baryon measurements and taking into account the projectile contribution at backward rapidity region. Based on the full projectile net-baryon distributions, calculation results show that the rapidity loss stops increasing from the SPS top energy to RHIC energies, indicating that baryon transport does not depend strongly on energy at high energies.Comment: 7 pages, 4 figure

    Density and expansion effects on pion spectra in relativistic heavy-ion collisions

    Get PDF
    We compute the pion inclusive momentum distribution in heavy-ion collisions at AGS energies, assuming thermal equilibrium and accounting for density and expansion effects at the time of decoupling. We compare to data on mid rapidity charged pions produced in central Au + Au collisions and find a very good agreement. The shape of the distribution at low mtmm_t-m is explained in part as an effect arising from the high mean pion density achieved in these reactions. The difference between the positive and negative pion distributions in the same region is attributed in part to the different average yields of each kind of charged pions.Comment: Minor changes, typo in Fig. 2b corrected, version to appear in Phys. Rev.

    Momentum--dependent nuclear mean fields and collective flow in heavy ion collisions

    Full text link
    We use the Boltzmann-Uehling-Uhlenbeck model to simulate the dynamical evolution of heavy ion collisions and to compare the effects of two parametrizations of the momentum--dependent nuclear mean field that have identical properties in cold nuclear matter. We compare with recent data on nuclear flow, as characterized by transverse momentum distributions and flow (FF) variables for symmetric and asymmetric systems. We find that the precise functional dependence of the nuclear mean field on the particle momentum is important. With our approach, we also confirm that the difference between symmetric and asymmetric systems can be used to pin down the density and momentum dependence of the nuclear self consistent one--body potential, independently. All the data can be reproduced very well with a momentum--dependent interaction with compressibility K = 210 MeV.Comment: 15 pages in ReVTeX 3.0; 12 postscript figures uuencoded; McGill/94-1
    corecore