29 research outputs found

    Antioxidant treatment attenuates lactate production in diabetic nephropathy

    Get PDF
    The early progression of diabetic nephropathy is notoriously difficult to detect and quantify before the occurrence of substantial histological damage. Recently, hyperpolarized [1-13C]pyruvate has demonstrated increased lactate production in the kidney early after the onset of diabetes, implying increased lactate dehydrogenase activity as a consequence of increased nicotinamide adenine dinucleotide substrate availability due to upregulation of the polyol pathway, i.e., pseudohypoxia. In this study, we investigated the role of oxidative stress in mediating these metabolic alterations using state-of-the-art hyperpolarized magnetic resonance (MR) imaging. Ten-week-old female Wistar rats were randomly divided into three groups: healthy controls, untreated diabetic (streptozotocin treatment to induce insulinopenic diabetes), and diabetic, receiving chronic antioxidant treatment with TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) via the drinking water. Examinations were performed 2, 3, and 4 wk after the induction of diabetes by using a 3T Clinical MR system equipped with a dual tuned 13C/1H-volume rat coil. The rats received intravenous hyperpolarized [1-13C]pyruvate and were imaged using a slice-selective 13C-IDEAL spiral sequence. Untreated diabetic rats showed increased renal lactate production compared with that shown by the controls. However, chronic TEMPOL treatment significantly attenuated diabetes-induced lactate production. No significant effects of diabetes or TEMPOL were observed on [13C]alanine levels, indicating an intact glucose-alanine cycle, or [13C]bicarbonate, indicating normal flux through the Krebs cycle. In conclusion, this study demonstrates that diabetes-induced pseudohypoxia, as indicated by an increased lactate-to-pyruvate ratio, is significantly attenuated by antioxidant treatment. This demonstrates a pivotal role of oxidative stress in renal metabolic alterations occurring in early diabetes. </jats:p

    CO 2

    No full text

    Hyperpolarized (13) C,(15) N2 -Urea MRI for assessment of the urea gradient in the porcine kidney.

    No full text
    PURPOSE: A decline in cortico-medullary osmolality gradient of the kidney may serve as an early indicator of pathological disruption of the tubular reabsorption process. The purpose of this study was to investigate the feasibility of hyperpolarized (13) C,(15) N2 -urea MRI as a biomarker of renal function in healthy porcine kidneys resembling the human physiology. METHODS: Five healthy female Danish domestic pigs (weight 30 kg) were scanned at 3 Tesla (T) using a (13) C 3D balanced steady-state MR pulse sequence following injection of hyperpolarized (13) C,(15) N2 -urea via a femoral vein catheter. Images were acquired at different time points after urea injection, and following treatment with furosemide. RESULTS: A gradient in cortico-medullary urea was observed with an intramedullary accumulation 75 s after injection of hyperpolarized (13) C,(15) N2 -urea, whereas images acquired at earlier time points postinjection were dominated by cortical perfusion. Furosemide treatment resulted in an increased urea accumulation in the cortical space, leading to a reduction of the medullary-to-cortical signal ratio of 49%. CONCLUSION: This study demonstrates that hyperpolarized (13) C,(15) N2 -urea MRI is capable of identifying the intrarenal accumulation of urea and can differentiate acute renal functional states in multipapillary kidneys, highlighting the potential for human translation. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine
    corecore