51 research outputs found

    Role of NAD(P)H Oxidase in Superoxide Generation and Endothelial Dysfunction in Goto-Kakizaki (GK) Rats as a Model of Nonobese NIDDM

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue. Methods and Results: This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (16964 mg%) Goto-Kakizaki (GK) rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 19566%, Wistar; 10063.5%). Consistent with these findings, 10 26 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 4167%, Wistar; 10065%) and measurements in the aorta showed a similar trend (p =.08). In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor. Conclusions: The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction i

    Glia-Pinealocyte Network: The Paracrine Modulation of Melatonin Synthesis by Tumor Necrosis Factor (TNF)

    Get PDF
    The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    Molecular analysis of a female Lesch-Nyhan patient.

    No full text
    We report the identification of a female patient with the X-linked recessive Lesch-Nyhan syndrome (hypoxanthine phosphoribosyltransferase [HPRT] deficiency). Cytogenetic and carrier studies revealed structurally normal chromosomes for this patient and her parents and demonstrated that this mutation arose through a de novo gametic event. Comparison of this patient's DNA with the DNA of her parents revealed that a microdeletion, which occurred within a maternal gamete and involved the entire HPRT gene, was partially responsible for the disease in this patient. Somatic cell hybrids, generated to separate maternal and paternal X chromosomes, showed that expression of two additional X-linked enzymes, phosphoglycerate kinase and glucose-6-phosphate dehydrogenase, were expressed only in cells that contained the maternal X chromosome, suggesting the presence of a functionally inactive paternal X chromosome. Furthermore, comparison of methylation patterns within a region of the HPRT gene known to be important in gene regulation revealed differences between DNA from the father and the patient, in keeping with an active HPRT locus in the father and an inactive HPRT locus in the patient. Together these data indicate that nonrandom inactivation of the cytogenetically normal paternal X chromosome and a microdeletion of the HPRT gene on an active maternal X chromosome were responsible for the absence of HPRT in this patient

    Molecular analysis of a female Lesch-Nyhan patient.

    No full text
    • …
    corecore