30 research outputs found

    Electrodeposition of Co-Ni-MoxOy Powders: Part I. The Influence of Deposition Conditions on Powder Composition and Morphology

    Get PDF
    The Co-Ni-MoxOy powders were obtained electrochemically at a constant current density from ammonia electrolyte. Ni and Co were anomalously deposited, inducing Mo deposition, which cannot be deposited separately from aqueous solutions. The obtained Co-Ni-MoxOy powders were investigated by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electon microscope (SEM) methods. Based on the obtained experimental results, it was concluded that the particle size of deposited powders is influenced by the chemical composition of the electrolyte and current density imposed. XRD results suggested that obtained powders were of amorphous structure, although a Co3Mo compound can be formed if certain experimental conditions are applied

    Molecular Diagnosis of Toxoplasma gondii in Aborted Women

    No full text

    Thermal Evolution of Magnetic Interactions in Ni Nanowires Embedded in Polycarbonate Membranes by Ferromagnetic Resonance

    No full text
    International audienceNi polycrystalline nanowires with diameters of 50, 80, and 100 nm were electrodeposited in cylindrical pores of track-etched polycarbonate membranes. Their magnetic properties were determined as a function of temperature using ferromagnetic resonance and magnetization measurements. At room temperature, the uniaxial anisotropy is equal to the shape anisotropy whereas an additional contribution is evidenced at low temperature. This additional contribution is attributed to magnetoelastic effects induced in the nanowires due to the different thermal expansion constants of Ni and polycarbonate. The analysis of magnetization processes in Ni nanowire arrays evidenced strong dipolar interactions inside the wires due to the domain structure. The coercive field of the nanowires was shown to be nearly a linear function of the temperature and could be accounted for temperature dependence of the uniaxial anisotropy

    PERIOD1 coordinates hippocampal rhythms and memory processing with daytime

    No full text
    In species ranging from flies to mammals, parameters of memory processing, like acquisition, consolidation, and retrieval are clearly molded by time of day. However, mechanisms that regulate and adapt these temporal differences are elusive, with an involvement of clock genes and their protein products suggestive. Therefore, we analyzed initially in mouse hippocampus the daytime-dependent dynamics of parameters, known to be important for proper memory formation, like phosphorylation of the "memory molecule" cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) and chromatin remodeling. Next, in an effort to characterize the mechanistic role of clock genes within hippocampal molecular dynamics, we compared the results obtained from wildtype (WT) -mice and mice deficient for the archetypical clock gene Period1 (Per1-mice). We detected that the circadian rhythm of CREB phosphorylation in the hippocampus of WT mice disappeared completely in mice lacking Per1. Furthermore, we found that the here for the first time described profound endogenous day/night rhythms in histone modifications in the hippocampus of WT-mice are markedly perturbed in Per1-mice. Concomitantly, both, in vivo recorded LTP, a cellular correlate for long-term memory, and hippocampal gene expression were significantly altered in the absence of Per1. Notably, these molecular perturbations in Per1-mice were accompanied by the loss of daytime-dependent differences in spatial working memory performance. Our data provide a molecular blueprint for a novel role of PER1 in temporally shaping the daytime-dependency of memory performance, likely, by gating CREB signaling, and by coupling to downstream chromatin remodeling
    corecore