8,678 research outputs found
Status of the Silicon Strip Detector at CMS
The CMS Tracker is the world's largest silicon detector. It has only recently been moved underground and installed in the 4T solenoid. Prior to this there has been an intensive testing on the surface, which confirms that the detector system fully meets the design specifications. Irradiation studies with the sensor material shows that the system will survive for at least 10 years in the harsh radiation environment prevailing within the Tracker volume. The planning phase for SLHC as the successor of LHC, with a ten times higher luminosity at the same energy has already begun. First R\&D studies for more robust detector materials and a new Tracker layout have started
Geant4 Simulation of a filtered X-ray Source for Radiation Damage Studies
Geant4 low energy extensions have been used to simulate the X-ray spectra of
industrial X-ray tubes with filters for removing the uncertain low energy part
of the spectrum in a controlled way. The results are compared with precisely
measured X-ray spectra using a silicon drift detector. Furthermore, this paper
shows how the different dose rates in silicon and silicon dioxide layers of an
electronic device can be deduced from the simulations
Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data
Constraint Programming (CP) has proved an effective paradigm to model and
solve difficult combinatorial satisfaction and optimisation problems from
disparate domains. Many such problems arising from the commercial world are
permeated by data uncertainty. Existing CP approaches that accommodate
uncertainty are less suited to uncertainty arising due to incomplete and
erroneous data, because they do not build reliable models and solutions
guaranteed to address the user's genuine problem as she perceives it. Other
fields such as reliable computation offer combinations of models and associated
methods to handle these types of uncertain data, but lack an expressive
framework characterising the resolution methodology independently of the model.
We present a unifying framework that extends the CP formalism in both model
and solutions, to tackle ill-defined combinatorial problems with incomplete or
erroneous data. The certainty closure framework brings together modelling and
solving methodologies from different fields into the CP paradigm to provide
reliable and efficient approches for uncertain constraint problems. We
demonstrate the applicability of the framework on a case study in network
diagnosis. We define resolution forms that give generic templates, and their
associated operational semantics, to derive practical solution methods for
reliable solutions.Comment: Revised versio
Cones, pringles, and grain boundary landscapes in graphene topology
A polycrystalline graphene consists of perfect domains tilted at angle
{\alpha} to each other and separated by the grain boundaries (GB). These nearly
one-dimensional regions consist in turn of elementary topological defects,
5-pentagons and 7-heptagons, often paired up into 5-7 dislocations. Energy
G({\alpha}) of GB computed for all range 0<={\alpha}<=Pi/3, shows a slightly
asymmetric behavior, reaching ~5 eV/nm in the middle, where the 5's and 7's
qualitatively reorganize in transition from nearly armchair to zigzag
interfaces. Analysis shows that 2-dimensional nature permits the off-plane
relaxation, unavailable in 3-dimensional materials, qualitatively reducing the
energy of defects on one hand while forming stable 3D-landsapes on the other.
Interestingly, while the GB display small off-plane elevation, the random
distributions of 5's and 7's create roughness which scales inversely with
defect concentration, h ~ n^(-1/2)Comment: 9 pages, 4 figure
Optimal General Matchings
Given a graph and for each vertex a subset of the
set , where denotes the degree of vertex
in the graph , a -factor of is any set such that
for each vertex , where denotes the number of
edges of incident to . The general factor problem asks the existence of
a -factor in a given graph. A set is said to have a {\em gap of
length} if there exists a natural number such that and . Without any restrictions the
general factor problem is NP-complete. However, if no set contains a gap
of length greater than , then the problem can be solved in polynomial time
and Cornuejols \cite{Cor} presented an algorithm for finding a -factor, if
it exists. In this paper we consider a weighted version of the general factor
problem, in which each edge has a nonnegative weight and we are interested in
finding a -factor of maximum (or minimum) weight. In particular, this
version comprises the minimum/maximum cardinality variant of the general factor
problem, where we want to find a -factor having a minimum/maximum number of
edges.
We present an algorithm for the maximum/minimum weight -factor for the
case when no set contains a gap of length greater than . This also
yields the first polynomial time algorithm for the maximum/minimum cardinality
-factor for this case
Dipole polarizability of 120Sn and nuclear energy density functionals
The electric dipole strength distribution in 120Sn between 5 and 22 MeV has
been determined at RCNP Osaka from a polarization transfer analysis of proton
inelastic scattering at E_0 = 295 MeV and forward angles including 0{\deg}.
Combined with photoabsorption data an electric dipole polarizability
\alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The dipole polarizability as
isovector observable par excellence carries direct information on the nuclear
symmetry energy and its density dependence. The correlation of the new value
with the well established \alpha_D(208Pb) serves as a test of its prediction by
nuclear energy density functionals (EDFs). Models based on modern Skyrme
interactions describe the data fairly well while most calculations based on
relativistic Hamiltonians cannot.Comment: 6 pages, 4 figure
Belle II Technical Design Report
The Belle detector at the KEKB electron-positron collider has collected
almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an
upgrade of KEKB is under construction, to increase the luminosity by two orders
of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2
/s luminosity. To exploit the increased luminosity, an upgrade of the Belle
detector has been proposed. A new international collaboration Belle-II, is
being formed. The Technical Design Report presents physics motivation, basic
methods of the accelerator upgrade, as well as key improvements of the
detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets
Using the Penning trap mass spectrometer TITAN, we performed the first direct
mass measurements of 20,21Mg, isotopes that are the most proton-rich members of
the A = 20 and A = 21 isospin multiplets. These measurements were possible
through the use of a unique ion-guide laser ion source, a development that
suppressed isobaric contamination by six orders of magnitude. Compared to the
latest atomic mass evaluation, we find that the mass of 21Mg is in good
agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements
reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times,
respectively, resulting in a significant departure from the expected behavior
of the isobaric multiplet mass equation in both the A = 20 and A = 21
multiplets. This presents a challenge to shell model calculations using either
the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving
interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure
- …
