8 research outputs found
Characterization and mechanical properties of ultrahigh boron steels produced by powder metallurgy
The present work is part of an investigation into the use of rapid solidification and powder metallurgy techniques to obtain iron-boron alloys with good mechanical properties. Two Fe-B binary alloys and two ultrahigh boron tool steels were gas atomized and consolidated by hot isostatic pressing (HIP) at temperatures ranging from 700 °C to 1100 °C to have a fine microstructure. Optimum properties were achieved for the binary alloys at low consolidation temperatures, since the solidification mi-crostructure from the original powders is eliminated and, at the same time, fine microstructures and low porosity are obtained in the alloys. At high temperatures and low strain rates, three of the four alloys exhibited low stress exponents, but only the Fe-2.2 pct B alloy showed tensile elongations higher than 100 pct. At low temperatures, only the Fe-2.2 pct B alloy deformed plastically. This alloy showed values of tensile elongation and ultimate tensile strength that were strongly dependent on testing and consolidation temperatures.Peer reviewe