437 research outputs found
Microwave conductivity in the ferropnictides with specific application to BaKFeAs
We calculate the microwave conductivity of a two band superconductor with
gap symmetry. Inelastic scattering is included approximately in a BCS
model augmented by a temperature dependent quasiparticle scattering rate
assumed, however, to be frequency independent. The possibility that the s-wave
gap on one or the other of the electron or hole pockets is anisotropic is
explored including cases with and without gap nodes on the Fermi surface. A
comparison of our BCS results with those obtained in the Two Fluid Model (TFM)
is provided as well as with the case of the cuprates where the gap has d-wave
symmetry and with experimental results in BaKFeAs. The
presently available microwave conductivity data in this material provides
strong evidence for large anisotropies in the electron pocket s-wave gap. While
a best fit favors a gap with nodes on the Fermi surface this disagrees with
some but not all penetration depth measurements which would favor a node-less
gap as do also thermal conductivity and nuclear magnetic resonance data.Comment: 12 pages, 9 figures. Phys. Rev. B (submitted
Magnetic resonance at 41 meV and charge dynamics in YBa_2Cu_3O_6.95
We report an Eliashberg analysis of the electron dynamics in YBa_2Cu_3O_6.95.
The magnetic resonance at 41 meV couples to charge carriers and defines the
characteristic shape in energy of the scattering rate \tau^{-1}(T,\omega) which
allows us to construct the charge-spin spectral density I^2\chi(\omega,T) at
temperature T. The T dependence of the weight under the resonance peak in
I^2\chi(\omega,T) agrees with experiment as does that of the London penetration
depth and of the microwave conductivity. Als, at T=0 condensation energy, the
fractional oscillator strength in the condensate, and the ratio of gap to
critical temperature agree well with the data.Comment: 7 Pages, 3 Figures, accepted for publication in Europhysics Letter
Optical sum in Nearly Antiferromagnetic Fermi Liquid Model
We calculate the optical sum (OS) and the kinetic energy (KE) for a tight
binding band in the Nearly Antiferromagnetic Fermi Liquid (NAFFL) model which
has had some success in describing the electronic structure of the high
cuprates. The interactions among electrons due to the exchange of spin
fluctuations profoundly change the probability of occupation of states of momentum {\bf k} and spin which is the
central quantity in the calculations of OS and KE. Normal and superconducting
states are considered as a function of temperature. Both integrals are found to
depend importantly on interactions and an independent electron model is
inadequate.Comment: 9 Pages, 5 Figures Accepted for publication in Phys. Rev.
Optical Sum Rule in Finite Bands
In a single finite electronic band the total optical spectral weight or
optical sum carries information on the interactions involved between the charge
carriers as well as on their band structure. It varies with temperature as well
as with impurity scattering. The single band optical sum also bears some
relationship to the charge carrier kinetic energy and, thus, can potentially
provide useful information, particularly on its change as the charge carriers
go from normal to superconducting state. Here we review the considerable
advances that have recently been made in the context of high oxides, both
theoretical and experimental.Comment: Review article accepted for publication in J. Low Temp. Phys. 29
pages, 33 figure
A possible cooling effect in high temperature superconductors
We show that an adiabatic increase of the supercurrent along a superconductor
with lines of nodes of the order parameter on the Fermi surface can result in a
cooling effect. The maximum cooling occurs if the supercurrent increases up to
its critical value. The effect can also be observed in a mixed state of a bulk
sample. An estimate of the energy dissipation shows that substantial cooling
can be performed during a reasonable time even in the microkelvin regime.Comment: 5 pages, to appear in Phys. Rev.
Bosons in high temperature superconductors: an experimental survey
We review a number of experimental techniques that are beginning to reveal
fine details of the bosonic spectrum \alpha^2F(\Omega) that dominates the
interaction between the quasiparticles in high temperature superconductors.
Angle-resolved photo emission (ARPES) shows kinks in electronic dispersion
curves at characteristic energies that agree with similar structures in the
optical conductivity and tunnelling spectra. Each technique has its advantages.
ARPES is momentum resolved and offers independent measurements of the real and
imaginary part of the contribution of the bosons to the self energy of the
quasiparticles. The optical conductivity can be used on a larger variety of
materials and with the use of maximum entropy techniques reveals rich details
of the spectra including their evolution with temperature and doping. Scanning
tunnelling spectroscopy offers spacial resolution on the unit cell level. We
find that together the various spectroscopies, including recent Raman results,
are pointing to a unified picture of a broad spectrum of bosonic excitations at
high temperature which evolves, as the temperature is lowered into a peak in
the 30 to 60 meV region and a featureless high frequency background in most of
the materials studied. This behaviour is consistent with the spectrum of spin
fluctuations as measured by magnetic neutron scattering. However, there is
evidence for a phonon contribution to the bosonic spectrum as well.Comment: 71 pages, 52 figure
- …