52 research outputs found

    Radion Dynamics and Phenomenology in the Linear Dilaton Model

    Full text link
    We investigate the properties of the radion in the 5D linear dilaton model arising from Little String Theory. A Goldberger-Wise type mechanism is used to stabilise a large interbrane distance, with the dilaton now playing the role of the stabilising field. We consider the coupled fluctuations of the metric and dilaton fields and identify the physical scalar modes of the system. The wavefunctions and masses of the radion and Kaluza-Klein modes are calculated, giving a radion mass of order the curvature scale. As a result of the direct coupling between the dilaton and Standard Model fields, the radion couples to the SM Lagrangian, in addition to the trace of the energy-momentum tensor. The effect of these additional interaction terms on the radion decay modes is investigated, with a notable increase in the branching fraction to photons. We also consider the effects of a non-minimal Higgs coupling to gravity, which introduces a mixing between the Higgs and radion modes. Finally, we calculate the production cross section of the radion at the LHC and use the current Higgs searches to place constraints on the parameter space.Comment: 28 pages, 7 figures; v2: error in radion-gauge boson Feynman rules corrected, version published in JHE

    On Composite Two Higgs Doublet Models

    Get PDF
    We investigate composite two Higgs doublet models realized as pseudo Goldstone modes, generated through the spontaneous breaking of a global symmetry due to strong dynamic at the TeV scale. A detailed comparative survey of two possible symmetry breaking patterns, SU(5) -> SU(4) x U(1) and SU(5) x SU(4), is made. We point out choices for the Standard Model fermion representations that can alleviate some phenomenological constraints, with emphasis towards a simultaneous solution of anomalous Zb\bar{b} coupling and Higgs mediated Flavor Changing Neutral Currents. We also write down the kinetic lagrangian for several models leading to Two Higgs Doublets and identify the anomalous contributions to the T parameter. Moreover, we describe a model based on the breaking SO(9)/SO(8)SO(9)/SO(8) in which there is no tree-level breaking of custodial symmetry, discussing also the possible embeddings for the fermion fields.Comment: 17 pages. Mistake corrected, added one section on a T- and flavor safe model based on SO(9)/SO(8). Matches published versio

    Search for light custodians in a clean decay channel at the LHC

    Full text link
    Models of warped extra dimensions with custodial symmetry usually predict the existence of a light Kaluza-Klein fermion arising as a partner of the right-handed top quark, sometimes called light custodians which we will denote b~R\tilde{b}_R. The production of these particles at the LHC can give rise to multi-W events which could be observed in same-sign dilepton channels, but its mass reconstruction is challenging. In this letter we study the possibility of finding a signal for the pair production of this new particle at the LHC focusing on a rarer, but cleaner decay mode of a light custodian into a ZZ boson and a bb-quark. In this mode it would be possible to reconstruct the light custodian mass. In addition to the dominant standard model QCD production processes, we include the contribution of a Kaluza-Klein gluon first mode. We find that the b~R\tilde{b}_R stands out from the background as a peak in the bZb Z invariant mass. However, when taking into account only the electronic and muonic decay modes of the ZZ boson and bb-tagging efficiencies, the LHC will have access only to the very light range of masses, mb~=O(500)m_{\tilde{b}} = {\cal O} (500) GeV.Comment: 8 pages, 2 figure

    The Higgs as a Probe of Supersymmetric Extra Sectors

    Full text link
    We present a general method for calculating the leading contributions to h -> gg and h -> gamma gamma in models where the Higgs weakly mixes with a nearly supersymmetric extra sector. Such mixing terms can play an important role in raising the Higgs mass relative to the value expected in the MSSM. Our method applies even when the extra sector is strongly coupled, and moreover does not require a microscopic Lagrangian description. Using constraints from holomorphy we fix the leading parametric form of the contributions to these Higgs processes, including the Higgs mixing angle dependence, up to an overall coefficient. Moreover, when the Higgs is the sole source of mass for a superconformal sector, we show that even this coefficient is often calculable. For appropriate mixing angles, the contribution of the extra states to h -> gg and h -> gamma gamma can vanish. We also discuss how current experimental limits already lead to non-trivial constraints on such models. Finally, we provide examples of extra sectors which satisfy the requirements necessary to use the holomorphic approximation.Comment: v4: 34 pages, 2 figures, typo corrected and clarification adde

    Distinguishing Various Models of the 125 GeV Boson in Vector Boson Fusion

    Full text link
    The hint of a new particle around 125 GeV at the LHC through the decay modes of diphoton and a number of others may point to quite a number of possibilities. While at the LHC the dominant production mechanism for the Higgs boson of the standard model and some other extensions is via the gluon fusion process, the alternative vector boson fusion is more sensitive to electroweak symmetry breaking through the gauge-Higgs couplings and therefore can be used to probe for models beyond the standard model. In this work, using the well known dijet-tagging technique to single out the vector boson fusion mechanism, we investigate its capability to discriminate a number of models that have been suggested to give an enhanced inclusive diphoton production rate, including the standard model Higgs boson, fermiophobic Higgs boson, Randall-Sundrum radion, inert-Higgs-doublet model, two-Higgs-doublet model, and the MSSM. The rates in vector-boson fusion can give more information of the underlying models to help distinguishing among the models.Comment: 31 pages, 3 figures; in this version some wordings are change

    Global Analysis of the Higgs Candidate with Mass ~ 125 GeV

    Get PDF
    We analyze the properties of the Higgs candidate with mass ~ 125 GeV discovered by the CMS and ATLAS Collaborations, constraining the possible deviations of its couplings from those of a Standard Model Higgs boson. The CMS, ATLAS and Tevatron data are compatible with Standard Model couplings to massive gauge bosons and fermions, and disfavour several types of composite Higgs models unless their couplings resemble those in the Standard Model. We show that the couplings of the Higgs candidate are consistent with a linear dependence on particle masses, scaled by the electroweak scale ~ 246 GeV, the power law and the mass scale both having uncertainties ~ 20%.Comment: 22 pages, 9 figures, v2 incorporates experimental data released during July 2012 and corrected (and improved) treatment of mass dependence of coupling

    Microencapsulation of Lactic Acid Bacteria Improves the Gastrointestinal Delivery and in situ Expression of Recombinant Fluorescent Protein

    Get PDF
    The microencapsulation process of bacteria has been used for many years, mainly in the food industry and, among the different matrixes used, sodium alginate stands out. This matrix forms a protective wall around the encapsulated bacterial culture, increasing its viability and protecting against environmental adversities, such as low pH, for example. The aim of the present study was to evaluate both in vitro and in vivo, the capacity of the encapsulation process to maintain viable lactic acid bacteria (LAB) strains for a longer period of time and to verify if they are able to reach further regions of mouse intestine. For this purpose, a recombinant strain of LAB (L. lactis ssp. cremoris MG1363) carrying the pExu vector encoding the fluorescence protein mCherry [L. lactis MG1363 (pExu:mCherry)] was constructed. The pExu was designed by our group and acts as a vector for DNA vaccines, enabling the host cell to produce the protein of interest. The functionality of the pExu:mCherry vector, was demonstrated in vitro by fluorescence microscopy and flow cytometry after transfection of eukaryotic cells. After this confirmation, the recombinant strain was submitted to encapsulation protocol with sodium alginate (1%). Non-encapsulated, as well as encapsulated strains were orally administered to C57BL/6 mice and the expression of mCherry protein was evaluated at different times (0–168 h) in different bowel portions. Confocal microscopy showed that the expression of mCherry was higher in animals who received the encapsulated strain in all portions of intestine analyzed. These results were confirmed by qRT-PCR assay. Therefore, this is the first study comparing encapsulated and non-encapsulated L. lactis bacteria for mucosal DNA delivery applications. Our results showed that the microencapsulation process is an effective method to improve DNA delivery, ensuring a greater number of viable bacteria are able to reach different sections of the bowel

    Exploring the Higgs Portal with 10/fb at the LHC

    Full text link
    We consider the impact of new exotic colored and/or charged matter interacting through the Higgs portal on Standard Model Higgs boson searches at the LHC. Such Higgs portal couplings can induce shifts in the effective Higgs-gluon-gluon and Higgs-photon-photon couplings, thus modifying the Higgs production and decay patterns. We consider two possible interpretations of the current LHC Higgs searches based on ~ 5/fb of data at each detector: 1) a Higgs boson in the mass range (124-126) GeV and 2) a `hidden' heavy Higgs boson which is underproduced due to the suppression of its gluon fusion production cross section. We first perform a model independent analysis of the allowed sizes of such shifts in light of the current LHC data. As a class of possible candidates for new physics which gives rise to such shifts, we investigate the effects of new scalar multiplets charged under the Standard Model gauge symmetries. We determine the scalar parameter space that is allowed by current LHC Higgs searches, and compare with complementary LHC searches that are sensitive to the direct production of colored scalar states.Comment: 27 pages, 11 figures; v2: references added, correction to scalar form factor, numerical results updated with Moriond 2012 data, conclusions unchange
    corecore