37 research outputs found
On QBF Proofs and Preprocessing
QBFs (quantified boolean formulas), which are a superset of propositional
formulas, provide a canonical representation for PSPACE problems. To overcome
the inherent complexity of QBF, significant effort has been invested in
developing QBF solvers as well as the underlying proof systems. At the same
time, formula preprocessing is crucial for the application of QBF solvers. This
paper focuses on a missing link in currently-available technology: How to
obtain a certificate (e.g. proof) for a formula that had been preprocessed
before it was given to a solver? The paper targets a suite of commonly-used
preprocessing techniques and shows how to reconstruct certificates for them. On
the negative side, the paper discusses certain limitations of the
currently-used proof systems in the light of preprocessing. The presented
techniques were implemented and evaluated in the state-of-the-art QBF
preprocessor bloqqer.Comment: LPAR 201
QRAT+: Generalizing QRAT by a More Powerful QBF Redundancy Property
The QRAT (quantified resolution asymmetric tautology) proof system simulates
virtually all inference rules applied in state of the art quantified Boolean
formula (QBF) reasoning tools. It consists of rules to rewrite a QBF by adding
and deleting clauses and universal literals that have a certain redundancy
property. To check for this redundancy property in QRAT, propositional unit
propagation (UP) is applied to the quantifier free, i.e., propositional part of
the QBF. We generalize the redundancy property in the QRAT system by QBF
specific UP (QUP). QUP extends UP by the universal reduction operation to
eliminate universal literals from clauses. We apply QUP to an abstraction of
the QBF where certain universal quantifiers are converted into existential
ones. This way, we obtain a generalization of QRAT we call QRAT+. The
redundancy property in QRAT+ based on QUP is more powerful than the one in QRAT
based on UP. We report on proof theoretical improvements and experimental
results to illustrate the benefits of QRAT+ for QBF preprocessing.Comment: preprint of a paper to be published at IJCAR 2018, LNCS, Springer,
including appendi
Incremental QBF Solving
We consider the problem of incrementally solving a sequence of quantified
Boolean formulae (QBF). Incremental solving aims at using information learned
from one formula in the process of solving the next formulae in the sequence.
Based on a general overview of the problem and related challenges, we present
an approach to incremental QBF solving which is application-independent and
hence applicable to QBF encodings of arbitrary problems. We implemented this
approach in our incremental search-based QBF solver DepQBF and report on
implementation details. Experimental results illustrate the potential benefits
of incremental solving in QBF-based workflows.Comment: revision (camera-ready, to appear in the proceedings of CP 2014,
LNCS, Springer
Shortening QBF Proofs with Dependency Schemes
We provide the first proof complexity results for QBF dependency calculi. By showing that the reflexive resolution path dependency scheme admits exponentially shorter Q-resolution proofs on a known family of instances, we answer a question first posed by Slivovsky and Szeider in 2014 [30]. Further, we conceive a method of QBF solving in which dependency recomputation is utilised as a form of inprocessing. Formalising this notion, we introduce a new calculus in which a dependency scheme is applied dynamically. We demonstrate the further potential of this approach beyond that of the existing static system with an exponential separation
Failed literal detection for QBF
Abstract. Failed literal detection (FL) in SAT is a powerful approach for preprocessing. The basic idea is to assign a variable as assumption. If boolean constraint propagation (BCP) yields an empty clause then the negated assumption is necessary for satisfiability. Whereas FL is common in SAT, it cannot easily be applied to QBF due to universal quantification. We present two approaches for FL to preprocess prenex CNFs. The first one is based on abstraction where certain universal variables are treated as existentially quantified. Second we combine QBF-specific BCP (QBCP) in FL with Q-resolution to validate assignments learnt by FL. Finally we compare these two approaches to a third common approach based on SAT. It turns out that the three approaches are incomparable. Experimental evaluation demonstrates that FL for QBF can improve the performance of search- and elimination-based QBF solvers.