26,686 research outputs found

    The Production of Ti44 and Co60 in Supernova

    Full text link
    The production of the radioactive isotopes 44^{44}Ti and 60^{60}Co in all types of supernovae is examined and compared to observational constraints including Galactic γ\gamma--ray surveys, measurements of the diffuse 511 keV radiation, γ\gamma--ray observations of Cas A, the late time light curve of SN 1987A, and isotopic anomalies found in silicon carbide grains in meteorites. The (revised) line flux from 44^{44}Ti decay in the Cas A supernova remnant reported by COMPTEL on the Compton Gamma-Ray Observatory is near the upper bound expected from our models. The necessary concurrent ejection of 56^{56}Ni would also imply that Cas A was a brighter supernova than previously thought unless extinction in the intervening matter was very large. Thus, if confirmed, the reported amount of 44^{44}Ti in Cas A provides very interesting constraints on both the supernova environment and its mechanism. The abundances of 44^{44}Ti and 60^{60}Co ejected by Type II supernovae are such that gamma-radiation from 44^{44}Ti decay SN 1987A could be detected by a future generation of gamma-ray telescopes and that the decay of 60^{60}Co might provide an interesting contribution to the late time light curve of SN 1987A and other Type II supernovae. To produce the solar 44^{44}Ca abundance and satisfy all the observational constraints, nature may prefer at least the occasional explosion of sub-Chandrasekhar mass white dwarfs as Type Ia supernovae. Depending on the escape fraction of positrons due to 56^{56}Co made in all kinds of Type Ia supernovae, a significant fraction of the steady state diffuse 511 keV emission may arise from the annihilation of positrons produced during the decay of 44^{44}Ti to 44^{44}Ca. The Ca and Ti isotopic anomalies in pre-solar grains confirm the production of 44^{44}Ti in supernovae and thatComment: 27 pages including 7 figures. uuencoded, compressed, postscript. in press Ap

    Dispersive Photon Blockade in a Superconducting Circuit

    Full text link
    Mediated photon-photon interactions are realized in a superconducting coplanar waveguide cavity coupled to a superconducting charge qubit. These non-resonant interactions blockade the transmission of photons through the cavity. This so-called dispersive photon blockade is characterized by measuring the total transmitted power while varying the energy spectrum of the photons incident on the cavity. A staircase with four distinct steps is observed and can be understood in an analogy with electron transport and the Coulomb blockade in quantum dots. This work differs from previous efforts in that the cavity-qubit excitations retain a photonic nature rather than a hybridization of qubit and photon and provides the needed tolerance to disorder for future condensed matter experiments.Comment: 4 pages, 3 figure

    Real-Time Operating System/360

    Get PDF
    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing

    A Four-Unit-Cell Periodic Pattern of Quasiparticle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+d

    Full text link
    Scanning tunneling microscopy is used to image the additional quasiparticle states generated by quantized vortices in the high-Tc superconductor Bi2Sr2CaCu2O8+d. They exhibit a Cu-O bond oriented 'checkerboard' pattern, with four unit cell (4a0) periodicity and a ~30 angstrom decay length. These electronic modulations may be related to the magnetic field-induced, 8a0 periodic, spin density modulations of decay length ~70 angstroms recently discovered in La1.84Sr0.16CuO4. The proposed explanation is a spin density wave localized surrounding each vortex core. General theoretical principles predict that, in the cuprates, a localized spin modulation of wavelength L should be associated with a corresponding electronic modulation of wavelength L/2, in good agreement with our observations.Comment: 10 pages, 3 figure

    Translational Symmetry Breaking in the Superconducting State of the Cuprates: Analysis of the Quasiparticle Density of States

    Full text link
    Motivated by the recent STM experiments of J.E. Hoffman et.al. and C. Howald et.al., we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a d-wave superconductor. We develop a general formalism to discuss periodic charge order, as well as quasiparticle scattering off localized defects. We argue that the STM experiments in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} cannot be explained using a simple charge density wave order parameter, but are consistent with the presence of a periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss implications of weak translational symmetry breaking for ARPES experiments.Comment: 12 pages, 9 figs; (v2) minor corrections to formalism, discussions of dispersion, structure factors and sum rules added; (v3) discussion of space-dependent normalization added. To be published in PR
    • …
    corecore