15,820 research outputs found

    Satellite power systems structures: A 1980 technology status review

    Get PDF
    The classes of major structural components and constructions utilized were considered. A review of the current (SPS) structure technology status was made. The major issues considered pertinent to SPS structures are: Cost effective construction, construction materials, structural design requirements, stress and dimensional integrity of as-built structures, and predictability of strength and dynamic behavior. The feasibility of passive figure control approach to MPTS flatness, of structure stiffness compatible with MPTS pointing, of passive control through damping, and the feasibility of space fabrication of ultra-large reflector surfaces are also considered. Qualification, model verification, inspection are considered of vital concern

    Development of deployable structures for large space platform systems. Volume 1: Executive summary

    Get PDF
    The preponderance of study effort was devoted toward the deployable platform systems study which culminated in the detailed design of a ground test article for future development testing. This design is representative of a prototype square-truss, single-fold building-block design that can construct deployable platform structures. This prototype design was selected through a comprehensive and traceable selection process applied to eight competitive designs. The selection process compared the competitive designs according to seven major selection criteria, i.e., design versatility, cost, thermal stability, meteoroid impact significance, reliability, performance predictability, and orbiter integration suitability. In support of the foregoing, a materials data base, and platform systems technology development needs were established. An erectable design of an OTV hangar was selected and recommended for further design development. This design was selected from five study-developed competitive single-fold and double-fold designs including hard-shell and inflatable designs. Also, two deployable manned module configurations, i.e., a hard-shell and an inflatable design were each developed to the same requirements as the composite of two Space station baseline habitat modules

    Virtual Transfer Price Negotiations:Unintended Interactions with Incentive Systems

    Get PDF
    Despite decades of research concerning the impact of computer-mediated communication (CMC) on decision-making, the potential interaction with the organization\u27s management control system has just recently received attention. Media naturalness theory is used to develop hypotheses concerning the interactions of communication medium with the incentive pay scheme, a ubiquitous aspect of management control systems. A laboratory experiment was used to examine the interactions between two treatments: face-to-face negotiations versus virtual (computer-mediated) negotiations and cooperative versus competitive incentive pay schemes. Buyer-seller dyads negotiated the price and quantity of the transferred goods. Results indicate that while virtual negotiations are more efficient in terms of time than face-to-face negotiations, there is not a significant interaction with the incentive pay scheme for efficiency. However. results also indicate that virtual negotiations are less effective in terms of optimal quantity (organizational profit) than face-to-face, and that there is a significant interaction with the incentive pay scheme. Virtual negotiations have the unintended consequence of reducing the effectiveness (organizational profitability) of the negotiations

    Trade study plan for Reusable Hydrogen Composite Tank System (RHCTS)

    Get PDF
    This TA 1 document describes the trade study plan (with support from TA 2) that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The analysis uses information derived in the TA 2 study as identified within the study plan. In view of this, for convenience, the TA 2 study plan is included as an appendix to this document

    Selection process for trade study: Graphite Composite Primary Structure (GCPS)

    Get PDF
    This TA 2 document describes the selection process that will be used to identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The most suitable unpressurized graphite composite structures and material selections is within this configuration and will be the prototype design for subsequent design and analysis and the basis for the design and fabrication of payload bay, wing, and thrust structure full scale test articles representing segments of the prototype structures. The selection process for this TA 2 trade study is the same as that for the TA 1 trade study. As the trade study progresses additional insight may result in modifications to the selection criteria within this process. Such modifications will result in an update of this document as appropriate

    Test plan. GCPS task 7, subtask 7.1: IHM development

    Get PDF
    The overall objective of Task 7 is to identify cost-effective life cycle integrated health management (IHM) approaches for a reusable launch vehicle's primary structure. Acceptable IHM approaches must: eliminate and accommodate faults through robust designs, identify optimum inspection/maintenance periods, automate ground and on-board test and check-out, and accommodate and detect structural faults by providing wide and localized area sensor and test coverage as required. These requirements are elements of our targeted primary structure low cost operations approach using airline-like maintenance by exception philosophies. This development plan will follow an evolutionary path paving the way to the ultimate development of flight-quality production, operations, and vehicle systems. This effort will be focused on maturing the recommended sensor technologies required for localized and wide area health monitoring to a technology readiness level (TRL) of 6 and to establish flight ready system design requirements. The following is a brief list of IHM program objectives: design out faults by analyzing material properties, structural geometry, and load and environment variables and identify failure modes and damage tolerance requirements; design in system robustness while meeting performance objectives (weight limitations) of the reusable launch vehicle primary structure; establish structural integrity margins to preclude the need for test and checkout and predict optimum inspection/maintenance periods through life prediction analysis; identify optimum fault protection system concept definitions combining system robustness and integrity margins established above with cost effective health monitoring technologies; and use coupons, panels, and integrated full scale primary structure test articles to identify, evaluate, and characterize the preferred NDE/NDI/IHM sensor technologies that will be a part of the fault protection system

    Trade study plan for Graphite Composite Primary Structure (GCPS)

    Get PDF
    This TA 2 document (with support from TA 1) describes the trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination For this most suitable configuration the structural attachment of the wing, and the most suitable GCPS composite materials for intertank, wing, tail and thrust structure are identified. This trade study analysis uses extensive information derived in the TA 1 trade study plan and is identified within the study plan. In view of this, for convenience, the TA 1 study plan is included as an appendix to this document

    Milestone 4: Thrust structure concepts and IHM screening Graphite Composite Primary Structure (GCPS)

    Get PDF
    The first part of the task was to select up to three promising thrust structure constructions and to select materials for screening tests. Part of the nondestructive evaluation and inspection (NDE/I) and integrated health management (IHM) task is to acquire and develop NDE/I sensor technologies and to integrate those sensors into the full scale test articles which will be produced under the TA2 program. Review of the anticipated fault modes and the available sensor technology data indicates that three sensor technologies should be assessed for the in-situ monitoring of the composite primary structure elements. These are: ultrasonics (dry contact), acoustic emissions, and fiber optics (embedded or attached). In fact, a combination of sensor technologies will be needed to detect and evaluate the fault modes; not only do sensor technology have specific capabilities and applicability, but the three Gr/Ep primary structures being demonstrated under the TA2 effort have differing requirements based on their respective failure modes and designs

    Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    Get PDF
    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful
    corecore