51 research outputs found

    Carrier trapping and luminescence polarization in quantum dashes

    Full text link
    We study experimentally and theoretically polarization-dependent luminescence from an ensemble of quantum-dot-like nanostructures with a very large in-plane shape anisotropy (quantum dashes). We show that the measured degree of linear polarization of the emitted light increases with the excitation power and changes with temperature in a non-trivial way, depending on the excitation conditions. Using an approximate model based on the k.p theory, we are able to relate this degree of polarization to the amount of light hole admixture in the exciton states which, in turn, depends on the symmetry of the envelope wave function. Agreement between the measured properties and theory is reached under assumption that the ground exciton state in a quantum dash is trapped in a confinement fluctuation within the structure and thus localized in a much smaller volume of much lower asymmetry than the entire nanostructure.Comment: 13 pages, 9 figures; considerably extended, additional discussion and new figures include

    Wetting layer states of InAs/GaAs self-assembled quantum dot structures. Effect of intermixing and capping layer

    Get PDF
    The authors present a modulated reflectivity study of the wetting layer (WL) states in mol. beam epitaxy grown InAs/GaAs quantum dot (QD) structures designed to emit light in the 1.3-1.5 micro m range. A high sensitivity of the technique has allowed the observation of all optical transitions in the QD system, including low oscillator strength transitions related to QD ground and excited states, and the ones connected with the WL quantum well (QW). The support of WL content profiles, detd. by transmission electron microscopy, has made it possible to analyze in detail the real WL QW confinement potential which was then used for calcg. the optical transition energies. In spite of a very effective WL QW intermixing, mainly due to the Ga-In exchange process (causing the redn. of the max. indium content in the WL layer to about 35% from nominally deposited InAs), the transition energies remain almost unaffected. The latter effect could be explained in effective mass envelope function calcns. taking into account the intermixing of the QW interfaces described within the diffusion model. We have followed the WL-related transitions of 2 closely spaced QD layers grown at different temps., as a function of the In content in the capping layer. Changing the capping layer from pure GaAs to In0.236Ga0.764As has no significant influence on the compn. profile of the WL itself and the WL QW transitions can be usually interpreted properly when based on the cap-induced modification of the confinement potential within a squarelike QW shape approxn. However, some of the obsd. features could be explained only after taking into consideration the effects of intermixing and InGaAs cap layer decompn. [on SciFinder (R)

    Optical and electronic properties of GaAs-based structures with columnar quantum dots

    Get PDF
    The electronic properties of a structure with columnar quantum dots obtained by close stacking of InAs submonolayers were studied by contactless electroreflectance (CER) and photoluminescence. These dots have an almost ideally rectangular cross section and uniform compn., which is promising for polarization independent gain. After energy level calcns. in the effective mass approxn. using compn. profiles obtained from cross-sectional TEM the part of the CER spectrum related to the 2-dimensional surrounding layer was explained and single heavy-hole-like and light-hole-like transitions related to the columnar dots identified, due to a single electron state confined in a shallow in-plane potential. [on SciFinder (R)

    Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing

    Get PDF
    This work was supported by the State of Bavaria.We report a systematic study of the temperature and excitation density behavior of an AlAs/AlGaAs, vertically emitting microcavity with embedded ternary Al0.20Ga0.80As/AlAs quantum wells in the strong coupling regime. Temperature-dependent photoluminescence measurements of the bare quantum wells indicate a crossover from the type-II indirect to the type-I direct transition. The resulting mixing of quantum well and barrier ground states in the conduction band leads to an estimated exciton binding energy systematically exceeding 25 meV. The formation of exciton-polaritons is evidenced in our quantum well microcavity via reflection measurements with Rabi splittings ranging from (13.93 ± 0.15) meV at low temperature (30 K) to (8.58 ± 0.40) meV at room temperature (300 K). Furthermore, the feasibility of polariton laser operation is demonstrated under non-resonant optical excitation conditions at 20 K and emission around 1.835 eV.PostprintPeer reviewe
    corecore