307 research outputs found

    Effect of Heavy Metal Contaminated Shooting Range Soils on Mycorrhizal Colonization of Roots and Metal Uptake by Leek

    Get PDF
    We grew leek (Allium porrum) in soils of two shooting ranges heavily contaminated with heavy metals in the towns of Zuchwil and Oberuzwil in Switzerland as a bioassay to test theactivity of arbuscular mycorrhizal (AM) fungi in these soils.Soil samples were taken from (1) front of the shooting house(HOUSE), (2) the area between house and target (FIELD) and (3) the berm (BACKSTOP). Samples of Ribwort plantain (Plantagolanceolata) growing naturally within the shooting ranges werealso collected and the colonization of its roots by mycorrhizalfungi was measured. The number of AM spores in the soils wassignificantly reduced concomitant with the increase in thedegree of soil contamination with metals. In Zuchwil,mycorrhizal fungi equally colonized roots of Ribwort plantainsampled from BACKSTOP and HOUSE. In Oberuzwil, however, plantsfrom BACKSTOP had lower colonization when compared with thosesampled from HOUSE. Colonization of leek was strongly reducedin the BACKSTOP soil of Zuchwil and slightly reduced in theBACKSTOP soil of Oberuzwil when compared with plants grown inrespective HOUSE soil. Concentrations of Cd, Cr, Cu, Ni, Pb andZn in the leaves of leek grown in the BACKSTOP soil was withinthe range considered toxic for human consumption. This pointsto the high degree of bio-availability of these metal in thesesoils. Significant decrease in the number of mycorrhizal sporesin the BACKSTOP soils in Zuchwil and the low colonization ofleek roots grown in these soils point to possible changes inthe species diversity of mycorrhizal fungi in these soil

    Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia

    Full text link
    The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding (SC-TB) model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behaviour above the transition temperature

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex

    Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target

    Get PDF
    Spin-polarised atomic hydrogen is used as a gaseous polarised proton target in high energy and nuclear physics experiments operating with internal beams in storage rings. When such beams are intense and bunched, this type of target can be depolarised by a resonant interaction with the transient magnetic field generated by the beam bunches. This effect has been studied with the HERA positron beam in the HERMES experiment at DESY. Resonances have been observed and a simple analytic model has been used to explain their shape and position. Operating conditions for the experiment have been found where there is no significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure

    Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target

    Full text link
    A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late

    The Flavor Asymmetry of the Light Quark Sea from Semi-inclusive Deep-inelastic Scattering

    Get PDF
    The flavor asymmetry of the light quark sea of the nucleon is determined in the kinematic range 0.02<x<0.3 and 1 GeV^2<Q^2<10 GeV^2, for the first time from semi-inclusive deep-inelastic scattering. The quantity (dbar(x)-ubar(x))/(u(x)-d(x)) is derived from a relationship between the yields of positive and negative pions from unpolarized hydrogen and deuterium targets. The flavor asymmetry dbar-ubar is found to be non-zero and x dependent, showing an excess of dbar over ubar quarks in the proton.Comment: 7 Pages, 2 figures, RevTeX format; slight revision in text, small change in extraction of dbar-ubar and comparison with a high q2 parameterizatio

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure
    corecore