157 research outputs found

    Züchtung von Saflor für den ökologischen Landbau

    Get PDF
    Safflower (Carthamus tinctorius L.) yields valuable oil for human consumption be-cause of its high amount of linoleic acid. A large demand exists for this oil, but there is no organic production in Germany. The main objective of this research is to compare different methods of selection, to develop a simple non-destructive method for analyz-ing seed constituents such as oil content, and to develop lines with increased oil content and higher disease resistance

    Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus

    Get PDF
    Adenosine and ATP, via their specific P1 and P2 receptors, modulate a wide variety of cellular and tissue functions, playing a neuroprotective or neurodegenerative role in brain damage conditions. Although, in general, adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, recent data suggest the existence of a heterodimerization and a functional interaction between P1 and P2 receptors in the brain. In particular, interactions of adenosine A1 and P2Y1 receptors may play important roles in the purinergic signalling cascade. In the present work, we investigated the subcellular localization/co-localization of the receptors and their functional cross-talk at the membrane level in Wistar rat hippocampus. This is a particularly vulnerable brain area, which is sensitive to adenosine- and ATP-mediated control of glutamatergic transmission. The postembedding immunogold electron microscopy technique showed that the two receptors are co-localized at the synaptic membranes and surrounding astroglial membranes of glutamatergic synapses. To investigate the functional cross-talk between the two types of purinergic receptors, we evaluated the reciprocal effects of their activation on their G protein coupling. P2Y1 receptor stimulation impaired the potency of A1 receptor coupling to G protein, whereas the stimulation of A1 receptors increased the functional responsiveness of P2Y1 receptors. The results demonstrated an A1–P2Y1 receptor co-localization at glutamatergic synapses and surrounding astrocytes and a functional interaction between these receptors in hippocampus, suggesting ATP and adenosine can interact in purine-mediated signalling. This may be particularly important during pathological conditions, when large amounts of these mediators are released

    Adaptive Radiation within Marine Anisakid Nematodes: A Zoogeographical Modeling of Cosmopolitan, Zoonotic Parasites

    Get PDF
    Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area

    The role of ATP and adenosine in the brain under normoxic and ischemic conditions

    Get PDF
    By taking advantage of some recently synthesized compounds that are able to block ecto-ATPase activity, we demonstrated that adenosine triphosphate (ATP) in the hippocampus exerts an inhibitory action independent of its degradation to adenosine. In addition, tonic activation of P2 receptors contributes to the normally recorded excitatory neurotransmission. The role of P2 receptors becomes critical during ischemia when extracellular ATP concentrations increase. Under such conditions, P2 antagonism is protective. Although ATP exerts a detrimental role under ischemia, it also exerts a trophic role in terms of cell division and differentiation. We recently reported that ATP is spontaneously released from human mesenchymal stem cells (hMSCs) in culture. Moreover, it decreases hMSC proliferation rate at early stages of culture. Increased hMSC differentiation could account for an ATP-induced decrease in cell proliferation. ATP as a homeostatic regulator might exert a different effect on cell trophism according to the rate of its efflux and receptor expression during the cell life cycle. During ischemia, adenosine formed by intracellular ATP escapes from cells through the equilibrative transporter. The protective role of adenosine A1 receptors during ischemia is well accepted. However, the use of selective A1 agonists is hampered by unwanted peripheral effects, thus attention has been focused on A2A and A3 receptors. The protective effects of A2A antagonists in brain ischemia may be largely due to reduced glutamate outflow from neurones and glial cells. Reduced activation of p38 mitogen-activated protein kinases that are involved in neuronal death through transcriptional mechanisms may also contribute to protection by A2A antagonism. Evidence that A3 receptor antagonism may be protective after ischemia is also reported

    ‘ Capsularia marina

    No full text
    • …
    corecore