441 research outputs found

    Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3

    Full text link
    We present a new method for modeling disordered solid solutions, based on the virtual crystal approximation (VCA). The VCA is a tractable way of studying configurationally disordered systems; traditionally, the potentials which represent atoms of two or more elements are averaged into a composite atomic potential. We have overcome significant shortcomings of the standard VCA by developing a potential which yields averaged atomic properties. We perform the VCA on a ferroelectric oxide, determining the energy differences between the high-temperature rhombohedral, low-temperature rhombohedral and tetragonal phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to superlattice calculations and experiment. We then use our new method to determine the preferred structural phase at x=0.4. We find that the low-temperature rhombohedral phase becomes the ground state at x=0.4, in agreement with experimental findings.Comment: 5 pages, no figure

    Influence of daily oral prophylactic selenium treatment on the dibutyltin dichloride (DBTC)-induced pancreatitis in rats

    Get PDF
    Dibutyltin dichloride (DBTC) is an organotin compound used as model for acute and chronic pancreatitis. Oxidative stress is one of the mechanisms of propagation of acinar cell injury in acute pancreatitis. Selenium is an essential cofactor in the antioxidant glutathione peroxidase pathway. Selenium levels are described to be subnormal in patients with acute and chronic pancreatitis. The aim of our studies was to determine the prophylactic effect of Na-selenite [5 mg kg-1 body weight (b.w.) per os (p.o.) 7 days] on the pathogenesis and course of DBTCinduced pancreatitis. Male inbred rats (LEW-1W Charles River) of 150 g body weight were used in this study. Experimental pancreatitis was induced by intravenous administration of 6 mg kg-1 b.w. DBTC in rats. Na-selenite was administered as daily oral dose of 5 mg kg-1 b.w. 7 days before induction of DBTC-pancreatitis. Malondialdehyde (MDA) was measured for monitoring levels of oxidative stress. Elimination of DBTC was reflected as tin concentration in bile and urine. Organ changes were indicated by serum parameters as well as histology. A prophylactic Na-selenite application significantly diminished MDA- and bilirubin concentration in serum, activities of lipase and transaminases as well as organ injuries compared to DBTC- treated rats in the absence of Naselenite. The prophylactic oral treatment with Na-selenite in the scope of DBTC-induced pancreatitis points to a reduced oxidative stress characterized by diminished MDA serum levels and a milder course of pancreatitis suggesting prophylactic substitution with Na-selenite to probably elicit beneficial effect on the clinical outcome in patients with endoscopic retrograde cholangiopancreatography (ERCP)

    First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys

    Full text link
    We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x (BS-PT) alloys recently proposed by Eitel et al. as promising materials for piezoelectric actuator applications. We show that (i) BS-PT displays very large structural distortions and polarizations at the morphotropic phase boundary (MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the ferroelectric and piezoelectric properties of BS-PT are dominated by the onset of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as far as the computed values of the piezoelectric coefficient d_15 are concerned. While our results are generally consistent with experiment, they also suggest that certain intrinsic properties of BS-PT may be even better than has been indicated by experiments to date. We also discuss results for PZT that demonstrate the prominent role played by Pb displacements in its piezoelectric properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm

    Experimental Evidence for Adaptation to Species-Specific Gut Microbiota in House Mice

    Get PDF
    The gut microbial communities of mammals have codiversified with host species, and changes in the gut microbiota can have profound effects on host fitness. Therefore, the gut microbiota may drive adaptation in mammalian species, but this possibility is underexplored. Here, we show that the gut microbiota has codiversified with mice in the genus Mus over the past 6 million years, and we present experimental evidence that the gut microbiota has driven adaptive evolution of the house mouse, Mus musculus domesticus. Phylogenetic analyses of metagenomeassembled bacterial genomic sequences revealed that gut bacterial lineages have been retained within and diversified alongside Mus species over evolutionary time. Transplantation of gut microbiotas from various Mus species into germfree M. m. domesticus showed that foreign gut microbiotas slowed growth rate and upregulated macrophage inflammatory protein in hosts. These results suggest adaptation by M. m. domesticus to its gut microbiota since it diverged from other Mus species

    Home-site advantage for host species–specific gut microbiota

    Get PDF
    Mammalian species harbor compositionally distinct gut microbial communities, but the mechanisms that maintain specificity of symbionts to host species remain unclear. Here, we show that natural selection within house mice (Mus musculus domesticus) drives deterministic assembly of the house-mouse gut microbiota from mixtures of native and non-native microbiotas. Competing microbiotas from wild-derived lines of house mice and other mouse species (Mus and Peromyscus spp.) within germ-free wild-type (WT) and Rag1-knockout (Rag1−/−) house mice revealed widespread fitness advantages for native gut bacteria. Native bacterial lineages significantly outcompeted non-native lineages in both WT and Rag1−/− mice, indicating home-site advantage for native microbiota independent of host adaptive immunity. However, a minority of native Bacteriodetes and Firmicutes favored by selection in WT hosts were not favored or disfavored in Rag1−/− hosts, indicating that Rag1 mediates fitness advantages of these strains. This study demonstrates home-site advantage for native gut bacteria, consistent with local adaptation of gut microbiota to their mammalian species

    Measures on Banach Manifolds and Supersymmetric Quantum Field Theory

    Full text link
    We show how to construct measures on Banach manifolds associated to supersymmetric quantum field theories. These measures are mathematically well-defined objects inspired by the formal path integrals appearing in the physics literature on quantum field theory. We give three concrete examples of our construction. The first example is a family ΌPs,t\mu_P^{s,t} of measures on a space of functions on the two-torus, parametrized by a polynomial PP (the Wess-Zumino-Landau-Ginzburg model). The second is a family \mu_\cG^{s,t} of measures on a space \cG of maps from ¶1\P^1 to a Lie group (the Wess-Zumino-Novikov-Witten model). Finally we study a family ΌM,Gs,t\mu_{M,G}^{s,t} of measures on the product of a space of connection s on the trivial principal bundle with structure group GG on a three-dimensional manifold MM with a space of \fg-valued three-forms on M.M. We show that these measures are positive, and that the measures \mu_\cG^{s,t} are Borel probability measures. As an application we show that formulas arising from expectations in the measures \mu_\cG^{s,1} reproduce formulas discovered by Frenkel and Zhu in the theory of vertex operator algebras. We conjecture that a similar computation for the measures ΌM,SU(2)s,t,\mu_{M,SU(2)}^{s,t}, where MM is a homology three-sphere, will yield the Casson invariant of M.M.Comment: Minor correction

    Lattice instabilities of PbZrO3/PbTiO3 [1:1] superlattices from first principles

    Full text link
    Ab initio phonon calculations for the nonpolar reference structures of the (001), (110), and (111) PbZrO_3/PbTiO_3 [1:1] superlattices are presented. The unstable polar modes in the tetragonal (001) and (110) structures are confined in either the Ti- or the Zr-centered layers and display two-mode behavior, while in the cubic (111) case one-mode behavior is observed. Instabilities with pure oxygen character are observed in all three structures. The implications for the ferroelectric behavior and related properties are discussed.Comment: 12 pages, 2 figures, 7 tables, submitted to PR

    Analyzing Cellular Internalization of Nanoparticles and Bacteria by Multi-spectral Imaging Flow Cytometry

    Get PDF
    Nanoparticulate systems have emerged as valuable tools in vaccine delivery through their ability to efficiently deliver cargo, including proteins, to antigen presenting cells1-5. Internalization of nanoparticles (NP) by antigen presenting cells is a critical step in generating an effective immune response to the encapsulated antigen. To determine how changes in nanoparticle formulation impact function, we sought to develop a high throughput, quantitative experimental protocol that was compatible with detecting internalized nanoparticles as well as bacteria. To date, two independent techniques, microscopy and flow cytometry, have been the methods used to study the phagocytosis of nanoparticles. The high throughput nature of flow cytometry generates robust statistical data. However, due to low resolution, it fails to accurately quantify internalized versus cell bound nanoparticles. Microscopy generates images with high spatial resolution; however, it is time consuming and involves small sample sizes6-8. Multi-spectral imaging flow cytometry (MIFC) is a new technology that incorporates aspects of both microscopy and flow cytometry that performs multi-color spectral fluorescence and bright field imaging simultaneously through a laminar core. This capability provides an accurate analysis of fluorescent signal intensities and spatial relationships between different structures and cellular features at high speed. Herein, we describe a method utilizing MIFC to characterize the cell populations that have internalized polyanhydride nanoparticles or Salmonella enterica serovar Typhimurium. We also describe the preparation of nanoparticle suspensions, cell labeling, acquisition on an ImageStreamX system and analysis of the data using the IDEAS application. We also demonstrate the application of a technique that can be used to differentiate the internalization pathways for nanoparticles and bacteria by using cytochalasin-D as an inhibitor of actin-mediated phagocytosis

    A Geometric Formulation of Quantum Stress Fields

    Full text link
    We present a derivation of the stress field for an interacting quantum system within the framework of local density functional theory. The formulation is geometric in nature and exploits the relationship between the strain tensor field and Riemannian metric tensor field. Within this formulation, we demonstrate that the stress field is unique up to a single ambiguous parameter. The ambiguity is due to the non-unique dependence of the kinetic energy on the metric tensor. To illustrate this formalism, we compute the pressure field for two phases of solid molecular hydrogen. Furthermore, we demonstrate that qualitative results obtained by interpreting the hydrogen pressure field are not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper supersedes cond-mat/000627

    First-principles extrapolation method for accurate CO adsorption energies on metal surfaces

    Full text link
    We show that a simple first-principles correction based on the difference between the singlet-triplet CO excitation energy values obtained by DFT and high-level quantum chemistry methods yields accurate CO adsorption properties on a variety of metal surfaces. We demonstrate a linear relationship between the CO adsorption energy and the CO singlet-triplet splitting, similar to the linear dependence of CO adsorption energy on the energy of the CO 2π\pi* orbital found recently {[Kresse {\em et al.}, Physical Review B {\bf 68}, 073401 (2003)]}. Converged DFT calculations underestimate the CO singlet-triplet excitation energy ΔES−T\Delta E_{\rm S-T}, whereas coupled-cluster and CI calculations reproduce the experimental ΔES−T\Delta E_{\rm S-T}. The dependence of EchemE_{\rm chem} on ΔES−T\Delta E_{\rm S-T} is used to extrapolate EchemE_{\rm chem} for the top, bridge and hollow sites for the (100) and (111) surfaces of Pt, Rh, Pd and Cu to the values that correspond to the coupled-cluster and CI ΔES−T\Delta E_{\rm S-T} value. The correction reproduces experimental adsorption site preference for all cases and obtains EchemE_{\rm chem} in excellent agreement with experimental results.Comment: Table sent as table1.eps. 3 figure
    • 

    corecore