1,968 research outputs found
On the Angular Dependence of the Radiative Gluon Spectrum
The induced momentum spectrum of soft gluons radiated from a high energy
quark produced in and propagating through a QCD medium is reexamined in the
BDMPS formalism. A mistake in our published work (Physical Review C60 (1999)
064902) is corrected. The correct dependence of the fractional induced loss
as a universal function of the variable
where is the size of the medium and
the transport coefficient is presented. We add the proof that the
radiated gluon momentum spectrum derived in our formalism is equivalent with
the one derived in the Zakharov-Wiedemann approach.Comment: LaTex, 5 pages, 1 figur
Cyclic mutually unbiased bases, Fibonacci polynomials and Wiedemann's conjecture
We relate the construction of a complete set of cyclic mutually unbiased
bases, i. e., mutually unbiased bases generated by a single unitary operator,
in power-of-two dimensions to the problem of finding a symmetric matrix over
F_2 with an irreducible characteristic polynomial that has a given Fibonacci
index. For dimensions of the form 2^(2^k) we present a solution that shows an
analogy to an open conjecture of Wiedemann in finite field theory. Finally, we
discuss the equivalence of mutually unbiased bases.Comment: 11 pages, added chapter on equivalenc
Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices
A new iterative method is developed to numerically calculate the periodic,
matched beam envelope solution of the coupled Kapchinskij-Vladimirskij (KV)
equations describing the transverse evolution of a beam in a periodic, linear
focusing lattice of arbitrary complexity. Implementation of the method is
straightforward. It is highly convergent and can be applied to all usual
parameterizations of the matched envelope solutions. The method is applicable
to all classes of linear focusing lattices without skew couplings, and also
applies to all physically achievable system parameters -- including where the
matched beam envelope is strongly unstable. Example applications are presented
for periodic solenoidal and quadrupole focusing lattices. Convergence
properties are summarized over a wide range of system parameters.Comment: 20 pages, 5 figures, Mathematica source code provide
The Coulomb Interaction between Pion-Wavepackets: The piplus-piminus Puzzle
The time dependent Schr\"odinger equation for -- pairs, which
are emitted from the interaction zone in relativistic nuclear collisions, is
solved using wavepacket states. It is shown that the Coulomb enhancement in the
momentum correlation function of such pairs is smaller than obtained in earlier
calculations based on Coulomb distorted plane waves. These results suggest that
the experimentally observed positive correlation signal cannot be caused by the
Coulomb interaction between pions emitted from the interaction zone. But other
processes which involve long-lived resonances and the related extended source
dimensions could provide a possible explanation for the observed signal.Comment: 12 pages, LaTeX, 1 figur
Flow effects on the freeze-out phase-space density in heavy ion collisions
The strong longitudinal expansion of the reaction zone formed in relativistic
heavy-ion collisions is found to significantly reduce the spatially averaged
pion phase-space density, compared to naive estimates based on thermal
distributions. This has important implications for data interpretation and
leads to larger values for the extracted pion chemical potential at kinetic
freeze-out.Comment: 5 pages, 3 figures included via epsfig, added discussion of different
transverse density profiles, 1 new figur
Emission times and opacities from interferometry in non-central Relativistic Nuclear Collisions
The nuclear overlap zone in non-central relativistic heavy ion collisions is
azimuthally very asymmetric. By varying the angle between the axes of
deformation and the transverse direction of the pair momenta, the transverse
HBT radii oscillate in a characteristic way. It is shown that these
oscillations allow determination of source sizes, deformations as well as the
opacity and duration of emission of the source created in any non-central high
energy nuclear collisions. The behavior of the physical quantities with
centrality of the collisions is discussed --- in particular changes caused by a
possible phase transition to a quark-gluon plasma.Comment: Revised version, to appear in Phys. Rev. Letter
Classical and Quantum-like approaches to Charged-Particle Fluids in a Quadrupole
A classical description of the dynamics of a dissipative charged-particle
fluid in a quadrupole-like device is developed. It is shown that the set of the
classical fluid equations contains the same information as a complex function
satisfying a Schrodinger-like equation in which Planck's constant is replaced
by the time-varying emittance, which is related to the time-varying temperature
of the fluid. The squared modulus and the gradient of the phase of this complex
function are proportional to the fluid density and to the current velocity,
respectively. Within this framework, the dynamics of an electron bunch in a
storage ring in the presence of radiation damping and quantum-excitation is
recovered. Furthermore, both standard and generalized (including dissipation)
coherent states that may be associated with the classical particle fluids are
fully described in terms of the above formalism.Comment: LaTex, to appear in Physica Script
Morphology of High-Multiplicity Events in Heavy Ion Collisions
We discuss opportunities that may arise from subjecting high-multiplicity
events in relativistic heavy ion collisions to an analysis similar to the one
used in cosmology for the study of fluctuations of the Cosmic Microwave
Background (CMB). To this end, we discuss examples of how pertinent features of
heavy ion collisions including global characteristics, signatures of collective
flow and event-wise fluctuations are visually represented in a Mollweide
projection commonly used in CMB analysis, and how they are statistically
analyzed in an expansion over spherical harmonic functions. If applied to the
characterization of purely azimuthal dependent phenomena such as collective
flow, the expansion coefficients of spherical harmonics are seen to contain
redundancies compared to the set of harmonic flow coefficients commonly used in
heavy ion collisions. Our exploratory study indicates, however, that these
redundancies may offer novel opportunities for a detailed characterization of
those event-wise fluctuations that remain after subtraction of the dominant
collective flow signatures. By construction, the proposed approach allows also
for the characterization of more complex collective phenomena like higher-order
flow and other sources of fluctuations, and it may be extended to the
characterization of phenomena of non-collective origin such as jets.Comment: Matches version accepted for publication in Physical Review C. 13
pages, 9 figure
New Formulation of Causal Dissipative Hydrodynamics: Shock wave propagation
The first 3D calculation of shock wave propagation in a homogeneous QGP has
been performed within the new formulation of relativistic dissipative
hydrodynamics which preserves the causality. We found that the relaxation time
plays an important role and also affects the angle of Mach cone.Comment: 4 pages, 1 figure, Proceedings of Quark Matter 200
- …